精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,AB=PA=1,AD= ,F是PB中点,E为BC上一点.

(1)求证:AF⊥平面PBC;
(2)当BE为何值时,二面角C﹣PE﹣D为45°.

【答案】
(1)证明:以A为原点,AD为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,

∵AB=PA=1,AD= ,F是PB中点,

∴A(0,0,0),P(0,0,1),B(0,1,0),C( ,1,0),

=(0,1,-1), =( ,1,-1),F(0, ),

=(0, ),

=0, =0,

∴AF⊥PB,AF⊥PC,

∴AF⊥平面PBC.


(2)解:设BE=a,∴E(a,1,0), =(a- ,1,0), =( ,0,-1),

设平面PDE的法向量 =(x,y,z),

取x=1,得 =(1, -a, ),

平面PCE的法向量为 =(0, ),

∵二面角C﹣PE﹣D为45°,

∴cos< , >= =

解得a=

∴当BE= 时,二面角C﹣PE﹣D为45°.

AF⊥平面PBC.


【解析】(1)以A为原点,AD为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,利用向量法能证明AF⊥平面PBC.(2)设BE=a,E(a,1,0求出平面PDE的法向量和平面PCE的法向量,利用向量法能求出当BE= 时,二面角C﹣PE﹣D为45°.
【考点精析】解答此题的关键在于理解直线与平面垂直的判定的相关知识,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是(

A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(﹣2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(﹣2)
D.函数f(x)有极大值f(﹣2)和极小值f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣ 存在单调递减区间,且y=f(x)的图象在x=0处的切线l与曲线y=ex相切,符合情况的切线l(
A.有3条
B.有2条
C.有1条
D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ ax2+x,a∈R.
(1)若f(1)=0,求函数f(x)的最大值;
(2)令g(x)=f(x)﹣(ax﹣1),求函数g(x)的单调区间;
(3)若a=﹣2,正实数x1 , x2满足f(x1)+f(x2)+x1x2=0,证明x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1= ,且对于任意正整数m,n都有an+m=anam . 若Sn<a对任意n∈N*恒成立,则实数a的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017广东佛山二模】某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).

(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;

(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017四川资阳4月模拟】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5组,制成如图所示频率分直方图.

(Ⅰ) 求图中的值;

(Ⅱ) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017重庆二诊】已知函数

(1)分别求函数在区间上的极值;

(2)求证:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y﹣4≤0,x≥0,y≥0}表示的平面区域分别为Ω1 , Ω2 , 若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为

查看答案和解析>>

同步练习册答案