精英家教网 > 高中数学 > 题目详情
(2012•威海一模)已知向量
m
=(2cosx,
3
cosx-sinx),
n
=(sin(x+
π
6
),sinx)
,且满足f(x)=
m
n

(I)求函数y=f(x)的单调递增区间;
(II)设△ABC的内角A满足f(A)=2,且
AB
AC
=
3
,求边BC的最小值.
分析:(I)根据向量的数量积公式和三角函数恒等变换的公式,化简得函数f(x)=2sin(2x+
π
6
)
,再由正弦函数的递增区间和整体思想进行求解;
(II)把条件代入(I)得到的解析式化简,再由A的范围和正弦值求出A,再代入2sin(2x+
π
6
)
化简求出bc的值,结合余弦定理和基本不等式求出a的最小值.
解答:解:(I)由题意得f(x)=
m
n
=2cosxsin(x+
π
6
)
+(
3
cosx-sinx)sinx
=2
3
sinxcosx+cos2x-sin2x=
3
sin2x+cos2x
=2sin(2x+
π
6
)

由2kπ-
π
2
2x+
π
6
≤2kπ+
π
2
(k∈Z)得,kπ-
π
3
≤x≤kπ+
π
6

则所求的单调递增区间是[kπ-
π
3
kπ+
π
6
](k∈Z).
(Ⅱ)由f(A)=2得,2sin(2x+
π
6
)
=2,即sin(2x+
π
6
)
=1,
∵0<A<π,∴
π
6
2A+
π
6
13π
6
,即2A+
π
6
=
π
2
,解得A=
π
6

AB
AC
=
3
得,bccosA=
3
,解得bc=2,
在△ABC中,a2=b2+c2-2bccosA
=b2+c2-
3
bc
≥2bc-
3
bc=(2-
3
)bc
,当且仅当b=c时取等号,
amin2=(2-
3
)×2
=4-2
3
,即a=
4-2
3
=
3
-1
点评:本题考查了向量的数量积运算,三角函数恒等变换公式,以及余弦定理和基本不等式的综合应用,掌握正弦函数的基本性质和解析式正确化简,是解好本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•威海一模)已知函数f(x)=x2+2bx过(1,2)点,若数列{
1
f(n)
}
的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海一模)已知a∈(π,
2
),cosα=-
5
5
,tan2α=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海一模)已知函数f(x)在R上单调递增,设α=
λ
1+λ
,β=
1
1+λ
(λ≠1)
,若有f(α)-f(β)>f(1)-f(0),则λ的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海一模)复数z=1-i,则
1
z
+z
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海一模)已知函数f(x)=
1
2
x2-ax+(a+1)lnx.
(Ⅰ)若曲线f(x)在点(2,f(2))处的切线与直线2x+3y+1=0垂直,求a的值;
(Ⅱ)若f(x)在区间(0,+∞)单调递增,求a的取值范围;
(Ⅲ)若-1<a<3,证明:对任意x1,x2∈(0,+∞),x1≠x2,都有
f(x1)-f(x2)
x1-x2
>1成立.

查看答案和解析>>

同步练习册答案