精英家教网 > 高中数学 > 题目详情
(本小题满分13分)

如图,在长方体中,,AB=2,点E在棱AB上移动.
(Ⅰ)证明:
(Ⅱ)当E为AB的中点时,求点A到面的距离;
(Ⅲ)AE等于何值时,二面角的大小为
(1)略;(2);(3)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,在直三棱柱中,AB=1,AC=2,,D,E分别是的中点.
(Ⅰ)证明:DE∥平面ABC;
(Ⅱ)求直线DE与平面所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,己知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,⊥BD垂足为H,PH是四棱锥的高,E为AD中点.

(Ⅰ)证明:PE⊥BC
(Ⅱ)若==60°,求直线PA与平面PEH所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在矩形中,的中点,以为折痕将向上折起,使,且平面平面 
(Ⅰ)求证:
(Ⅱ)求二面角的大小;
(Ⅲ)求点C到面的距离. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知矩形ABCD中,AB=2AD=4,ECD的中点,沿AE将三角形AED折起,使DB=
如图,O,H分别为AEAB中点.
(Ⅰ)求证:直线OH//面BDE; 
(Ⅱ)求证:面ADEABCE; 
(Ⅲ)求二面角O-DH-E的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中正确命题的个数是                                                              (  )
①经过空间一点一定可作一平面与两异面直线都平行;
②已知平面,直线ab,若,则
③有两个侧面垂直于底面的四棱柱为直四棱柱;
④四个侧面两两全等的四棱柱为直四棱柱;
⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
⑥底面是等边三角形,∠APB=∠BPC=∠CPA,则三棱锥PABC是正三棱锥.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

四面体ABCD中,有如下命题:①若AC⊥BD,AB⊥CD,则AD⊥BC;
②若E、F、G分别是BC、AB、CD的中点,则∠FEG的大小等于异面直线AC与BD所成角的大小;
③若四面体ABCD有内切球,则
④若四个面是全等的三角形,则ABCD为正四面体。
其中正确的是:  (填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若四面体的一条棱得长为,其余各条棱得长都为,则这个四面体的体积最大时,的值为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点A、B、C在球心为O的球面上,的内角A、B、C所对边的长分别为a、b、c,且,球心O到截面ABC的距离为,则该球的表面积为          

查看答案和解析>>

同步练习册答案