精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,圆O:x2+y2=4与x轴的正半轴交于点A,以A为圆心的圆A:(x﹣2)2+y2=r2(r>0)与圆O交于B,C两点.

(1)若直线l与圆O切于第一象限,且与坐标轴交于D,E,当线段DE长最小时,求直线l的方程;
(2)设P是圆O上异于B,C的任意一点,直线PB、PC分别与x轴交于点M和N,问OMON是否为定值?若是,请求出该定值;若不是,请说明理由.

【答案】
(1)解:设直线l的方程为 + =1(a>0,b>0),

即bx+ay﹣ab=0,

由直线l与圆O相切得

(当且仅当 时取等号),

此时直线l的方程为


(2)设B(x0,y0),P(x1,y1)(y1≠±y0),

则C(x0,﹣y0),

直线PB的方程为:

直线PC的方程为:

分别令y=0,得

所以OMON= 为定值.


【解析】(1)根据截距式设出直线方程l,根据直线与圆相切,圆心到直线的距离等于半径,可得到,再表示出DE2应用均值不等式即可得出取得最小值时a,b的值,从而得到直线方程,(2)根据题意设设B(x0,y0),P(x1,y1)(y1≠±y0),则C(x0,﹣y0),表示出PB,PC的直线方程,求得xM,xN,从而代入可知OMON为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,a∈R,若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利民中学为了了解该校高一年级学生的数学成绩,从高一年级期中考试成绩中抽出100名学生的成绩,由成绩得到如下的频率分布直方图.

根据以上频率分布直方图,回答下列问题:

(1)求这100名学生成绩的及格率;(大于等于60分为及格)

(2)试比较这100名学生的平均成绩和中位数的大小.(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且,若时,有成立.

(Ⅰ)判断上的单调性,并证明;

(Ⅱ)解不等式

(Ⅲ)若对所有的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:x﹣2y+2m﹣2=0.
(1)求过点(2,3)且与直线l垂直的直线的方程;
(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式ax2﹣bx﹣1≥0的解集是[ ],求不等式x2﹣bx﹣a<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0),上的点M(1,m)到其焦点F的距离为2,
(Ⅰ)求C的方程;并求其准线方程;
(II)已知A (1,﹣2),是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于 ?若存在,求直线L的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如右图抛物线顶点在原点,圆(x﹣2)2+y2=22的圆心恰是抛物线的焦点,

(Ⅰ)求抛物线的方程;
(Ⅱ)一直线的斜率等于2,且过抛物线焦点,它依次截抛物线和圆于A、B、C、D四点,求|AB|+|CD|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C: (m>0)的离心率为 ,A,B分别为椭圆的左、右顶点,F是其右焦点,P是椭圆C上异于A、B的动点.

(1)求m的值及椭圆的准线方程;
(2)设过点B且与x轴的垂直的直线交AP于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.

查看答案和解析>>

同步练习册答案