精英家教网 > 高中数学 > 题目详情
数列{an}的通项公式为an=log2n,若其图象上存在点(n,an)在可行域
x+y-3≤0
x-2y-3≤0
x≥m
内,则m的取值范围为(  )
分析:先画出由约束条件
x+y-3≤0
x-2y-3≤0
x≥m
确定的可行域D,由an=log2n图象上存在点(n,an)在可行域,判断出点A(2,1)在可行域内,即可得出m的范围.
解答:解:作出可行域:如图所示.
结合图,由an=log2n图象上存在点(n,an)在可行域,只须点A(2,1)在可行域内即可,
即 m≤2,
故选B.
点评:本题考查画不等式组表示的平面区域、考查将图形的大小关系转化为不等式,考查数形结合思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的前n项和Sn=2n2+n-1,则数列{an}的通项公为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,Sn是数列{an}的前n项和,且满足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求数列{an}的通项公an
(2)若记bn=(2n+1)•(
1Sn
+2)
,Tn为数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}中,a1=1,Sn是数列{an}的前n项和,且满足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求数列{an}的通项公an
(2)若记数学公式,Tn为数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数列{an}的前n项和Sn=2n2+n-1,则数列{an}的通项公为______.

查看答案和解析>>

科目:高中数学 来源:2002-2003学年北京市朝阳区高一(上)期末数学试卷(解析版) 题型:填空题

数列{an}的前n项和Sn=2n2+n-1,则数列{an}的通项公为   

查看答案和解析>>

同步练习册答案