精英家教网 > 高中数学 > 题目详情

若抛物线y2=2px的焦点与双曲线x2-y2=2的右焦点重合,则p的值为


  1. A.
    -2
  2. B.
    2
  3. C.
    -4
  4. D.
    4
D
分析:将双曲线化成标准方程,求得a2=b2=2的值,从而得到双曲线的右焦点为F(2,0),该点也是抛物线的焦点,可得 =2,所以p的值为4.
解答:∵双曲线x2-y2=2的标准形式为:=1
∴a2=b2=2,可得c==2,双曲线的右焦点为F(2,0)
∵抛物线y2=2px(p>0)的焦点与双曲线x2-y2=2的右焦点重合,
=2,可得p=4
故选D.
点评:本题给出抛物线与双曲线右焦点重合,求抛物线的焦参数的值,着重考查了双曲线的标准方程和抛物线简单几何性质等知识点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若抛物线y2=2px(p>0)的准线通过双曲线
x2
7
-
y2
2
=1
的一个焦点,则p=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px的焦点与椭圆
x2
12
+
y2
3
=1
的右焦点重合,则p的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px(p>0)上有一点M,其横坐标为8,它到焦点的距离为9,
(1)求焦点F的坐标
(2)并求直线MF的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点为F1(-1,0)、F2(1,0),点P(-1,
2
2
)
在椭圆上.
(1)求椭圆C的方程;
(2)若抛物线y2=2px(p>0)与椭圆C相交于点M、N,当△OMN(O是坐标原点)的面积取得最大值时,求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px的焦点与双曲线
x2
16
-
y2
9
=1
的右焦点重合,则p的值为(  )
A、-10
B、5
C、2
7
D、10

查看答案和解析>>

同步练习册答案
闁稿骏鎷� 闂傚偊鎷�