精英家教网 > 高中数学 > 题目详情

【题目】在正方体中,分别为的中点,点是上底面内一点,且平面,则的最小值是(

A.B.C.D.

【答案】C

【解析】

的中点分别为,连结分别为的中点,连结,交于点,连结,交,连结,由于点是底面内一点,且平面,通过面面平行的判定定理,得出平面平面

所以点的轨迹为线段,得出当点的中点时,最短,最大,的最小,,从而,由此能求出的最小值.

解:设的中点分别为,连结

在正方形中,分别为的中点,

连结,交于点,连结,交,连结

由于点是底面内一点,且平面

易知

平面平面

所以平面,同理平面

,所以平面平面

又因为平面平面

所以点的轨迹为线段.

设正方形中棱长为1

由于平面

所以点的中点时,最短,最大,的最小,

的最小值是

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 某个集团公司下属的甲、乙两个企业在2014年1月的产值都为a万元,甲企业每个月的产值与前一个月相比增加的产值相等,乙企业每个月的产值与前一个月相比增加的百分数相等,到2015年1月两个企业的产值再次相等.

(1)试比较2014年7月甲、乙两个企业产值的大小,并说明理由.

(2)甲企业为了提高产能,决定投入3.2万元买台仪器,并且从2015年2月1日起投入使用.从启用的第一天起连续使用,第n天的维修保养费为元(n∈N*),求前n天这台仪器的日平均耗资(含仪器的购置费),并求日平均耗资最小时使用的天数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中数据,求得线性回归方程为,若从这些样本中任取一点,则它在回归直线左下方的概率为______.

单价(元)

4

5

6

7

8

9

销量(件)

90

84

83

80

75

68

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形ABCD为正方形,为直角三角形,,且.

1)证明:平面平面

2)若AB=2AE,求异面直线BE与AC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=fx)+sinx[]上单调递增,则fx)可能是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数.

(1)的两个不同零点,是否存在实数,使成立?若存在,的值;若不存在,请说明理由.

(2),函数,存在个零点.

(i)的取值范围;

(ii)分别是这个零点中的最小值与最大值,的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校高一年级开设五门选修课,每位同学须彼此独立地选三课程,其中甲同学必选课程,不选课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.

Ⅰ)求甲同学选中课程且乙同学未选中课程的概率.

Ⅱ)用表示甲、乙、丙选中课程的人数之和,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,,平面底面,,分别是的中点,求证:

(1)底面;

(2)平面平面;

(3)平面平面.

查看答案和解析>>

同步练习册答案