精英家教网 > 高中数学 > 题目详情

【题目】某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理现需决策此蛋糕店每天应该制作几个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量单位:个,得到如图所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率

1若蛋糕店一天制作17个生日蛋糕,

求当天的利润单位:元关于当天需求量单位:个,的函数解析式;

在当天的利润不低于750元的条件下,求当天需求量不低于18个的概率

2若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的期望值为决定依据,判断应该制作16个是17个?

【答案】1

2一天应该制作个生日蛋糕

【解析】

试题分析:1由题意得,时,;当时,,即可求解函数的解析式根据当天的利润不低于750元为事件,设当天需求量不低于18个为事件,利用条件概率的计算公式,即可求解概率;2分别求出一天制作个,列出相应的分布列,求解数学期望,即可作出选择

试题解析:1时,

时,

设当天的利润不低于750元为事件,设当天需求量不低于18个为事件

利润不低于等价于需求量不低于16个,则

2蛋糕店一天应制作17个生日蛋糕,理由如下:

若蛋糕店一天制作17个,表示当天的利润单位:元的分布列为

550

650

750

850

01

02

016

054

若蛋糕店一天制作16个,表示当天的利润单位:元的分布列为

600

700

800

01

02

07

由以上的计算结果可以看出,,即一天制作17个的利润大于制作16个的利润,

所以蛋糕店一天应该制作17个生日蛋糕

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为实数,且,

(1)求方程的解; (2)若满足,求证:①; (3)在(2)的条件下,求证:由关系式所得到的关于的方程存在,使

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA=4,D是AB的中点

(1)求证:ACBC

(2)求证:AC//平面CDB

(3)求二面角B-DC-B1的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形,

(1)在上确定一点,使得平面,并求的值;

(2)在(1)条件下,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知, 对边分别为,已知.

1)若的面积等于,求

2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

将圆上每一点的纵坐标保持不变,横坐标变为原来的2倍得到曲线

1写出曲线的参数方程;

2以坐标原点为极点,轴正半轴为极轴坐标建立极坐标系,已知直线的极坐标方程为,若分别为曲线和直线上的一点,求的最近距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的一段图象如图所示.

(1)求函数的解析式;

(2)将函数的图象向右平移个单位,得到的图象,求直线

函数的图象在内所有交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次.

(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式:

(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,以轴正半轴为始边的锐角和钝角的终边分别与单位圆交于点,若点的横坐标是,点的纵坐标是.

(1)求的值;

(2)求的值.

查看答案和解析>>

同步练习册答案