精英家教网 > 高中数学 > 题目详情

【题目】在正三棱柱ABC﹣A1B1C1中,已知AB=CC1=2,则异面直线AB1和BC1所成角的余弦值为(
A.0
B.
C.﹣
D.

【答案】D
【解析】解:∵在正三棱柱ABC﹣A1B1C1中,AB=CC1=2, ∴以A为原点,在平面ABC中过A作AC的垂直为x轴,
以AC为y轴,AA1为z轴,建立空间直角坐标系,
则A(0,0,0),B1 ,1,2),B( ,1,0),C1(0,2,2),
=( ), =(﹣ ,1,2),
设异面直线AB1和BC1所成角为θ,
则cosθ= = =
∴异面直线AB1和BC1所成角的余弦值为
故选:D.

以A为原点,在平面ABC中过A作AC的垂直为x轴,以AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AB1和BC1所成角的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

Ⅰ)若函数在区间(其中)上存在极值,求实数的取值范围.

Ⅱ)如果当时,不等式恒成立,求实数的取值范围.

Ⅲ)求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面,底面是梯形,

(1)求证:平面平面

(2)设为棱上一点,,试确定的值使得二面角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校设计了一个实验考察方案:考生从6道备选题中随机抽取3道题,按照题目要求独立完成全部实验操作,规定:至少正确完成其中的2道题便可通过.己知6道备选题中考生甲有4道能正确完成,2道题不能完成;考生乙每题正确完成的概率都是 ,且每题正确完成与否互不影响.
(I) 求甲考生通过的概率;
(II) 求甲、乙两考生正确完成题数的概率分布列,和甲、乙两考生的数学期望;
(Ⅲ)请分析比较甲、乙两考生的实验操作能力.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是(
A.如果命题“¬p”与命题“p∨q”都是真命题,那么命题q一定是真命题
B.命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”
C.若命题p:?x0∈R,x02+2x0﹣3<0,则?p:?x∈R,x2+2x﹣3≥0
D.“sinθ= ”是“θ=30°”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国西部某省4A级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好村民俗文化基础设施后,任何一个月内(每月按30天计算)每天的旅游人数f(x)与第x天近似地满足 (千人),且参观民俗文化村的游客人均消费g(x)近似地满足g(x)=143﹣|x﹣22|(元).

(1)求该村的第x天的旅游收入p(x)(单位千元,1≤x≤30,x∈N*)的函数关系;

(2)若以最低日收入的20%作为每一天的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)在其定义域的一个子集[a,b]上存在实数 (a<m<b),使f(x)在m处的导数f′(m)满足f(b)﹣f(a)=f′(m)(b﹣a),则称m是函数f(x)在[a,b]上的一个“中值点”,函数f(x)= x3﹣x2在[0,b]上恰有两个“中值点”,则实数b的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 在[﹣m,m](m>0)上的最大值为p,最小值为q,则p+q=

查看答案和解析>>

同步练习册答案