分析 根据数列的单调性建立不等式关系进行求解即可.
解答 解:∵数列{an}的通项公式是an=$\frac{n+p}{n+1}$(p∈R),如果数列{an}是递增数列,
∴an+1-an=$\frac{n+1+p}{n+2}$-$\frac{n+p}{n+1}$=(1+$\frac{p-1}{n+2}$)-(1+$\frac{p-1}{n+1}$)=(p-1)($\frac{1}{n+2}$-$\frac{1}{n+1}$)=(p-1)•$\frac{-1}{(n+2)(n+1)}$=(1-p)•$\frac{1}{(n+2)(n+1)}$>0,
∴1-p>0,
即p<1,
故实数p的取值范围是(-∞,1)
故答案为:(-∞,1).
点评 本题主要考查数列的递推公式的应用,结合数列的单调性的关系建立不等式是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{2}$π | B. | π+1 | C. | π+$\frac{1}{6}$ | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$f($\frac{π}{6}$)>f($\frac{π}{3}$) | B. | f($\frac{π}{4}$)>-f($\frac{3π}{4}$) | C. | f(1)f(2)>0 | D. | f(2)f(3)<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (log2x)′=$\frac{1}{xln2}$ | B. | (x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$ | C. | [sin(-x)]′=cos(-x) | D. | (x2cosx)′=-2sinx |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com