精英家教网 > 高中数学 > 题目详情

【题目】比较下列各题中两个幂的值的大小:
(1)2.3 ,2.4
(2)
(3)(-0.31) ,0.35 .

【答案】
(1)解:∵y 为R上的增函数,

又2.3<2.4,

∴2.3 <2.4


(2)解:∵y 为(0,+∞)上的减函数,又 <

∴( ) >( )


(3)解:∵y 为R上的偶函数,

.

又函数y 为[0,+∞)上的增函数,

且0.31<0.35,

∴0.31 <0.35 ,即(-0.31) <0.35 .


【解析】(1)结合幂函数的单调性的定义即可得出结论。(2)根据幂函数的单调性的的定义即可得出结论。(3)利用幂函数的单调性以及偶函数的性质即可得出结论。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆C: =1(0<b<3)的右焦点为F,P为椭圆上一动点,连接PF交椭圆于Q点,且|PQ|的最小值为

(1)求椭圆方程;
(2)若 ,求直线PQ的方程;
(3)M,N为椭圆上关于x轴对称的两点,直线PM,PN分别与x轴交于R,S,求证:|OR||OS|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四棱锥S﹣ABCD中,侧棱与底面所成的角为α,侧面与底面所成的角为β,侧面等腰三角形的底角为γ,相邻两侧面所成的二面角为θ,则α、β、γ、θ的大小关系是(
A.α<β<γ<θ
B.α<β<θ<γ
C.θ<α<γ<β
D.α<γ<β<θ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点.
(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值为 ,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,直三棱柱ABCA1B1C1的底面是边长为2的正三角形,EF分别是BCCC1的中点.

(1)证明:平面AEF⊥平面B1BCC1
(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥FAEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+(a+2)x+5+a,a∈R.
(Ⅰ)若方程f(x)=0有一正根和一个负根,求a的取值范围;
(Ⅱ)当x>﹣1时,不等式f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知an=logn+1(n+2)(n∈N+),观察下列运算:a1a2=log23log34= =2;a1a2a3a4a5a6=log23log34…log67lg78= =3;….定义使a1a2a3…ak为整数的k(k∈N+)叫做希望数,则在区间[1,2016]内所有希望数的和为(
A.1004
B.2026
C.4072
D.22016﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为.

1)求数列的通项公式;

(2)设求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C对应边分别是a,b,c,c=2,sin2A+sin2B﹣sin2C=sinAsinB.
(1)若sinC+sin(B﹣A)=2sin2A,求△ABC面积;
(2)求AB边上的中线长的取值范围.

查看答案和解析>>

同步练习册答案