精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在矩形ABCD中,AD=2,AB=1,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′﹣EC﹣B是直二面角.

(1)证明:BE⊥CD′;
(2)求二面角D′﹣BC﹣E的余弦值.

【答案】
(1)证明:∵AD=2,AB=1,E是AD的中点,

∴△BAE,△CDE是等腰直角三角形,

∵AB=AE=DE=CD,∠BAE=∠CDE=90°,

∴∠BEC=90°,∴BE⊥EC.

又∵平面D'EC⊥平面BEC,面D'EC∩面BEC=EC,

∴BE⊥面D'EC,

又CD'面D'EC,∴BE⊥CD'


(2)解:法一:设M是线段EC的中点,过M作MF⊥BC垂足为F,

连接D'M,D'F,则D'M⊥EC,

∵平面D'EC⊥平面BEC,

∴D'M⊥平面BEC,∴D'M⊥BC,

∴BC⊥平面D′MF,∴D'F⊥BC,

∴∠D'FM是二面角D'﹣BC﹣E的平面角.

在Rt△D'MF中,D'M=

∴二面角D'﹣BC﹣E的余弦值为

法二:分别以EB,EC所在的直线为x轴、y轴,过E垂直于平面BEC的射线为z轴,

建立如图空间直角坐标系.

设平面BEC的法向量为

平面D'BC的法向量为

,取x2=1,得 =(1,1,1),

cos< >= =

∴二面角D'﹣BC﹣E的余弦值为


【解析】(1)由已知得BE⊥EC.从而BE⊥面D'EC,由此能证明BE⊥CD'.(2)法一:设M是线段EC的中点,过M作MF⊥BC垂足为F,则∠D'FM是二面角D'﹣BC﹣E的平面角.由此能求出二面角D'﹣BC﹣E的余弦值.法二:分别以EB,EC所在的直线为x轴、y轴,过E垂直于平面BEC的射线为z轴,建立空间直角坐标系.利用向量法能求出二面角D'﹣BC﹣E的余弦值.
【考点精析】本题主要考查了空间中直线与直线之间的位置关系的相关知识点,需要掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=log2x﹣3sin( x)零点的个数是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是公差d不为0的等差数列,a1=2,Sn为其前n项和.
(1)当a3=6时,若a1 , a3 …, 成等比数列(其中3<n1<n2<…<nk),求nk的表达式;
(2)是否存在合适的公差d,使得{an}的任意前3n项中,前n项的和与后n项的和的比值等于定常数?求出d,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一直线l过直线l1:3x﹣y=3和直线l2:x﹣2y=2的交点P,且与直线l3:x﹣y+1=0垂直.
(1)求直线l的方程;
(2)若直线l与圆心在x正半轴上的半径为 的圆C相切,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,
(1)求A的大小;
(2)若 ,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 的左、右焦点分别为F1 , F2 , 离心率为e,过F2的直线与椭圆的交于A,B两点,若△F1AB是以A为顶点的等腰直角三角形,则e2=(
A.3﹣2
B.5﹣3
C.9﹣6
D.6﹣4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一四棱锥P﹣ABCD的三视图如图所示,E是侧棱PC上的动点.
(Ⅰ)求四棱锥P﹣ABCD的体积.
(Ⅱ)若点E为PC的中点,AC∩BD=O,求证:EO∥平面PAD;
(Ⅲ)是否不论点E在何位置,都有BD⊥AE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=
(1)求a,b的值;
(2)不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;
(3)方程f(|2x﹣1|)+k( ﹣3)有三个不同的实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点P,Q从点A(1,0)出发沿单位圆运动,点P按逆时针方向每秒钟转 弧度,点Q按顺时针方向每秒钟转 弧度,设P,Q第一次相遇时在点B,则B点的坐标为

查看答案和解析>>

同步练习册答案