精英家教网 > 高中数学 > 题目详情

【题目】《九章算术》是中国古代第一部数学专著,全书总结了战国、秦、汉时期的数学成就。“更相减损术”便出自其中,原文记载如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。”其核心思想编译成如示框图,若输入的分别为45,63,则输出的为( )

A. 2B. 3C. 5D. 9

【答案】D

【解析】

通过已知,可以判断这是在求两数的最大公约数。也可以按照循环结构的特点,先判断后执行,分别求出当前的值,直到循环结束。

通过阅读可以知道,这是利用更相减损术求45,63的最大公约数,63,45的最大公约数是9。也可以按照循环结构来求解,如下表:

循环次数

a

b

初始

45

63

第一次

45

18

第二次

27

18

第三次

9

18

第四次

9

9

第五次

输出a=9

因此本题选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆锥的侧面展开图是一个半圆.

1)求圆锥的母线与底面所成的角;

2)过底面中心且平行于母线的截平面,若截面与圆锥侧面的交线是焦参数(焦点到准线的距离)为的抛物线,求圆锥的全面积;

3)过底面点作垂直且于母线的截面,若截面与圆锥侧面的交线是长轴为的椭圆,求椭圆的面积(椭圆号的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.2018年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,每生产x(百辆),需另投入成本万元,且.由市场调研知,每辆车售价5万元,且全年内生产的车辆当年能全部销售完.

1)求出2018年的利润Lx)(万元)关于年产量x(百辆)的函数关系式;(利润=销售额-成本)

22018年产量为多少百辆时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

讨论的单调性;

的极值点,且曲线在两点 处的切线相互平行,这两条切线在轴上的截距分别为,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有两个车间生产同一种产品,第一车间有工人200人,第二车间有工人400人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,并对他们中每位工人生产完成一件产品的时间(单位:min)分别进行统计,得到下列统计图表(按照[5565),[6575),[7585),[8595]分组).

分组

频数

[5565

2

[6575

4

[7585

10

[8595]

4

合计

20

第一车间样本频数分布表

(Ⅰ)分别估计两个车间工人中,生产一件产品时间小于75min的人数;

(Ⅱ)分别估计两车间工人生产时间的平均值,并推测哪个车间工人的生产效率更高?(同一组中的数据以这组数据所在区间中点的值作代表)

(Ⅲ)从第一车间被统计的生产时间小于75min的工人中,随机抽取3人,记抽取的生产时间小于65min的工人人数为随机变量X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的方程为:为圆上任意一点,过轴的垂线,垂足为,点上,且.

(1)求点的轨迹的方程;

(2)过点的直线与曲线交于两点,点的坐标为的面积为,求的最大值,及直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,当时,,给出下列命题:

①当时, ②函数有3个零点

的解集为,都有

其中正确命题的个数是( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O经过椭圆C=1ab0)的两个焦点以及两个顶点,且点(b)在椭圆C上.

(Ⅰ)求椭圆C的方程;

(Ⅱ)若直线l与圆O相切,与椭圆C交于MN两点,且|MN|=,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为,且成绩分布在分数在以上(含的同学获奖. 按文理科用分层抽样的方法抽取人的成绩作为样本得到成绩的频率分布直方图(见下图).

(1)的值,并计算所抽取样本的平均值同一组中的数据用该组区间的中点值作代表);

(2)填写下面的列联表,能否有超过的把握认为获奖与学生的文理科有关

文科生

理科生

合计

获奖

不获奖

合计

附表及公式:

,其中

查看答案和解析>>

同步练习册答案