精英家教网 > 高中数学 > 题目详情
(本小题满分12分)设平面α∥β,两条异面直线AC和BD分别在平面α、β内,线段AB、CD中点分别为M、N,设MN=a,线段AC=BD=2a,求异面直线AC和BD所成的角.
解:连接AD,取AD中点P,连接PM、PN,
则PN∥AC,PM∥BD,

∴∠MPN即是异面直线AC和BD所成的角,
又∵MN=,∴ΔPMN是等边三角形
∴∠MPN=600
∴异面直线AC和BD所成的角为600
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(9分)如图,ABCD是正方形,O是正方形的中心,PO底面ABCDEPC的中点.
(1)求证:PA∥平面BDE  
(2)求证:平面PAC平面BDE
(3)若,求三棱锥P-BDE的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分,其中第1小题6分,第2小题6分)
在直三棱柱中,,且异面直线所成的角等于,设
(1)求的值;
(2)求直线到平面的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
如图,在正方体中,E、F分别是中点。
(Ⅰ)求证:
(Ⅱ)求证:

(III)棱上是否存在点P使,若存在,确定点P位置;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.
如图,在直三棱柱中,
(1)求三棱柱的表面积
(2)求异面直线所成角的大小(结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三条直线a,b,c和平面,则下列推论中正确的是(   )
A.若a//b,b,则B.,b//,则a//b
C.若共面,则D.,则a//b

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间四点A、B、C、D如果其中任意三点不共线,则经过其中三个点的平面有(    )
A.一个或两个       B.一个或三个        C.一个或四个        D.两个或三个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体中,与直线异面,且与所成角为的面对角线共有      条.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正三棱柱的正(主)视图和侧(左)视图如图所示. 设的中心分别是,现将此三棱柱绕直线旋转,射线旋转所成的角为弧度(可以取到任意一个实数),对应的俯视图的面积为,则函数的最大值为          ;最小正周期为          .
说明:“三棱柱绕直线旋转”包括逆时针方向和顺时针方向,逆时针方向旋转时,旋转所成的角为正角,顺时针方向旋转时,旋转所成的角为负角.

查看答案和解析>>

同步练习册答案