精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)若上存在极大值点,求实数的取值范围;

(Ⅱ)求证:,其中

【答案】(Ⅰ) (Ⅱ)见证明

【解析】

(Ⅰ)先对函数求导,再由分类讨论的思想,分别讨论三种情况,即可得出结果;

(Ⅱ)令可得,由(Ⅰ)可知的极大值,再由时,,即可证明结论成立;也可用数学归纳法证明.

解:(Ⅰ)由于

则①当时,

即当时,单调递增;

时,单调递减;

处取得极大值,

,解得:

②当时,恒成立,无极值,不合题意舍去;

③当时,

即当时,单调递减;

时, 单调递增;

处取得极小值,不合题意舍去;

因此当时,上存在极大值点;

(Ⅱ)法一:令

由(Ⅰ)得:处取得极大值1,且该极值是唯一的,

,即,当且仅当时取“=”,

故当时,

因此

法二:下面用数学归纳法证明:,对恒成立.

(1)当时,左边,右边

左边右边,结论成立;

(2)假设当时,结论成立,即

时,左边

由(Ⅰ)得:处取得极大值1,且该极值是唯一的,

,即,当且仅当时取“=”,

恒成立,即

成立

故当时,结论成立,

因此,综合(1)(2)得,对恒成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数,,以为极点,轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程.

1)求曲线的普通方程和曲线的直角坐标方程;

2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.

该公司将近天,每天揽件数量统计如下:

包裹件数范围

包裹件数

(近似处理)

天数

(1)某人打算将 三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过元的概率;

(2)该公司从收取的每件快递的费用中抽取元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过件,工资元,目前前台有工作人员人,那么,公司将前台工作人员裁员人对提高公司利润是否更有利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两名射击运动员分别对一目标射击一次,甲射中的概率为0.8,乙射中的概率为0.9,求:

(1)2人都射中目标的概率;

(2)2人中恰有1人射中目标的概率;

(3)2人至少有1人射中目标的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦点分别为,点是椭圆上的点,面积的最大值是

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,点是椭圆上的点,是坐标原点,若判定四边形的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+1)-loga(1-x),a>0a≠1.

(1)f(x)的定义域;

(2)判断f(x)的奇偶性并予以证明;

(3)a>1,求使f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an1an(c>0,n∈N*),

(Ⅰ)证明:an1an≥1;

(Ⅱ)若对任意n∈N*,都有,证明:()对于任意m∈N*,当nm时,

(ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某高校学生喜欢使用手机支付是否与性别有关,抽取了部分学生作为样本,统计后作出如图所示的等高条形图,则下列说法正确的是(

A.喜欢使用手机支付与性别无关

B.样本中男生喜欢使用手机支付的约

C.样本中女生喜欢使用手机支付的人数比男生多

D.女生比男生喜欢使用手机支付的可能性大些

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,下列说法正确的是(

A.处取得极大值

B.有两个不同的零点

C.

D.恒成立,则

查看答案和解析>>

同步练习册答案