精英家教网 > 高中数学 > 题目详情
双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)与直线y=a相交所得的线段长为2b,则该双曲线的离心率为
 
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:把y=a代入双曲线
x2
a2
-
y2
b2
=1,解得x,推出ac=b2=c2-a2,解出e即可.
解答: 解:把y=a代入双曲线
x2
a2
-
y2
b2
=1,解得x=±
ac
b

2ac
b
=2b,
∴ac=b2=c2-a2
化为e2-e-1=0,e>1.
解得e=
1+
5
2

故答案为:
1+
5
2
点评:本题考查了双曲线的标准方程及其性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长方形ABCD中,已知AB=4,BC=2,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离小于2的概率为(  )
A、
π
8
B、
π
4
C、1-
π
8
D、1-
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列五个命题:
①命题“?x∈R使得x2+x+1<0”的否定是:“?x∈R均有x2+x+1>0”
②若两组数据的中位数相等,则它们的平均数也相等
③已知x>0时,(x-1)f′(x)<0,若△ABC是锐角三角形,则f(sinA)>f(cosB)
④“在三角形ABC中,若sinA>sinB,则A>B”的否命题是真命题
⑤过M(2,0)的直线l与椭圆
x2
2
+y2
=1交于P1,P2两点,线段P1P2中点为P,设直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2等于-
1
2

其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(x2+ax-a+1),当a>0时,f(x)在[2,+∞)上有反函数.
 
(判断对错)

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为1的正方体ABCD-A1B1C1D1中,直线AC到平面A1B1C1D1的距离为(  )
A、
2
2
B、
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等腰三角形ABC的腰长为底边长的2倍,则顶角A的余弦值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中正确的是(  )
A、命题?x∈R,x2+x+1<0的否定?x∈R,x2+x+1<0
B、若p∨q为真命题,则p∧q也为真命题
C、“函数f(x)=cos(2z+φ)为奇函数”是“φ=
π
2
”的充分不必要条件
D、命题“若x2-3x+2=0,则x=1”的否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式x2+x-56≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:x+my+6=0,直线l2:(m-2)x+3my+18=0.
(1)若l1∥l2,求实数m的值;
(2)若l1⊥l2,求实数m的值.

查看答案和解析>>

同步练习册答案