精英家教网 > 高中数学 > 题目详情

【题目】已知坐标平面内三点P(3,-1),M(6,2),N,直线过点P.若直线与线段MN相交,则直线的倾斜角的取值范围( )

A. B. C. D.

【答案】A

【解析】

先由P(3,﹣1),N(﹣),M(6,2),求得直线NP和MP的斜率,再根据直线l的倾斜角为锐角或钝角加以讨论,将直线l绕P点旋转并观察倾斜角的变化,由直线的斜率公式加以计算,分别得到直线l斜率的范围,进而得到直线的倾斜角的取值范围

∵P(3,﹣1),N(﹣),

直线NP的斜率k1==﹣

同理可得直线MP的斜率k2==1.

设直线l与线段AB交于Q点,

当直线的倾斜角为锐角时,随着Q从M向N移动的过程中,l的倾斜角变大,

l的斜率也变大,直到PQ平行y轴时l的斜率不存在,此时l的斜率k≥1;

当直线的倾斜角为钝角时,随着l的倾斜角变大,l的斜率从负无穷增大到

直线NP的斜率,此时l的斜率k≤﹣

可得直线l的斜率取值范围为:(﹣∞,﹣]∪[1,+∞).

直线的倾斜角的取值范围

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,输出的S值为(  )

A.2
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长2的正方形,E,F分别为线段DD1,BD的中点.

(1)求证:EF∥平面ABC1D1

(2)AA1=2,求异面直线EF与BC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若椭圆的中心在原点,焦点在轴上,点是椭圆上的一点,轴上的射影恰为椭圆的左焦点,与中心的连线平行于右顶点与上顶点的连线,且左焦点与左顶点的距离等于,试求椭圆的离心率及其方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1+ )(1+x)6展开式中x2的系数为(  )
A.15
B.20
C.30
D.35

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]
已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ae2x+(a﹣2)ex﹣x.(12分)
(1)讨论f(x)的单调性;
(2)若f(x)有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中,在直线

(1)求数列{an}的通项公式

(2)令,数列的前n项和为

(ⅰ)求

(ⅱ)是否存在整数λ,使得不等式(-1)nλ (nN)恒成立?若存在,求出λ的取值的集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:

(Ⅰ)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;
(Ⅱ)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50kg

箱产量≥50kg

旧养殖法

新养殖法

(Ⅲ)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:

P(K2≥k)

0.050

0.010

0.001

K

3.841

6.635

10.828

K2=

查看答案和解析>>

同步练习册答案