精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n≠0时,有
f(m)+f(n)
m+n
>0

(1)解不等式f(x+
1
2
)<f(1-x)

(2)若f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.
分析:(1)由f(x)是奇函数和单调性的定义,可得f(x)在[-1,1]上是增函数,再利用定义的逆用求解;
(2)先由(1)求得f(x)的最大值,再转化为关于a的不等式恒成立问题求解.
解答:解:(1)任取x1,x2∈[-1,1]且x1<x2,则f(x2)-f(x1)=f(x2)+f(-x1)=
f(x2)+f(-x1)
x2+(-x1)
•(x2-x1)>0

∴f(x2)>f(x1),∴f(x)为增函数
f(x+
1
2
)<f(1-x)

-1≤x+
1
2
≤1
-1≤1-x≤1
x+
1
2
<1-x

0≤x<
1
4

即不等式f(x+
1
2
)<f(1-x)
的解集为[0,
1
4
)

(2)由于f(x)为增函数,∴f(x)的最大值为f(1)=1,
∴f(x)≤t2-2at+1对x∈[-1,1],a∈[-1,1]恒成立,等价于t2-2at+1≥1对任意的a∈[-1,1]恒成立,
即t2-2at≥0对任意的a∈[-1,1]恒成立.
把y=t2-2at看作a的函数,由于a∈[-1,1]知其图象是一条线段.
∵t2-2at≥0对任意的a∈[-1,1]恒成立
t2-2×(-1)×t≥0
t2-2×1×t≥0

t2+2t≥0
t2-2t≥0

解得t≤-2或t=0或t≥2.
点评:本题主要考查单调性和奇偶性的综合应用及函数最值、恒成立问题的转化化归思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案