(本小题满分16分)
已知椭圆的离心率为
,一条准线
.
(1)求椭圆的方程;
(2)设O为坐标原点,是
上的点,
为椭圆
的右焦点,过点F作OM的垂线与以OM为直径的圆
交于
两点.
①若,求圆
的方程;
②若是l上的动点,求证:点
在定圆上,并求该定圆的方程.
(1);(2)①
或
;②设
,
由①知:,消去
得:
=2,
点
在定圆
=2上.
解析试题分析:(1)由题设:,
,
,
椭圆
的方程为:
………………………… 4分
(2)①由(1)知:,设
,
则圆的方程:
, ………………………… 6分
直线的方程:
, ………………………… 8分
,
, ………………………… 10分
,
圆
的方程:
或
…………… 12分
②解法(一):设,
由①知:,
即:, ………………………… 14分
消去得:
=2,
点
在定圆
=2上.……………… 16分
解法(二):设,则直线FP的斜率为
,
∵FP⊥OM,∴直线OM的斜率为,
∴直线OM的方程为:,点M的坐标为
.……………14 分
∵MP⊥OP,∴,∴
∴=2,
点
在定圆
=2上. …………………………16 分
考点:本题考查了直线与椭圆的位置关系
点评:求解圆锥曲线的方程关键是求解a和b,可应用已知条件得到关于两个参量的方程或由性质直接求得.
科目:高中数学 来源: 题型:解答题
在直角坐标系中,点
,点
为抛物线
的焦点,
线段恰被抛物线
平分.
(Ⅰ)求的值;
(Ⅱ)过点作直线
交抛物线
于
两点,设直线
、
、
的斜率分别为
、
、
,问
能否成公差不为零的等差数列?若能,求直线
的方程;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题15分)已知点是椭圆E:
(
)上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A、B是椭圆E上两个动点,(
).求证:直线AB的斜率为定值;
(Ⅲ)在(Ⅱ)的条件下,当△PAB面积取得最大值时,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题14分)抛物线与直线
相交于
两点,且
(1)求的值。
(2)在抛物线上是否存在点
,使得
的重心恰为抛物线
的焦点
,若存在,求点
的坐标,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆C中心在原点,焦点在轴上,一条经过点
且倾斜角余弦值为
的直线
交椭圆于A,B两点,交
轴于M点,又
.
(1)求直线的方程;
(2)求椭圆C长轴的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知焦点在轴上的椭圆
过点
,且离心率为
,
为椭圆
的左顶点.
(1)求椭圆的标准方程;
(2)已知过点的直线
与椭圆
交于
,
两点.
① 若直线垂直于
轴,求
的大小;
② 若直线与
轴不垂直,是否存在直线
使得
为等腰三角形?如果存在,求出直线
的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆C :经过点
离心率为
。
(Ⅰ) 求椭圆C的方程;
(Ⅱ)设直线l与椭圆C相交于A、B两点,以线段OA、OB为邻边作平行四边形OAPB,其中顶点P在椭圆C上,O为坐标原点。求O到直线l的距离的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知是长轴为
的椭圆上三点,点
是长轴的一个顶点,
过椭圆中心
,且
.
(1)建立适当的坐标系,求椭圆方程;
(2)如果椭圆上两点使直线
与
轴围成底边在
轴上的等腰三角形,是否总存在实数
使
?请给出证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com