13£®£¨1£©ÒÑÖªÊýÁÐ{an}ΪµÈ²îÊýÁУ¬ÆäÇ°nÏîºÍΪSn£®Èôa4+a5=0£¬ÊÔ·Ö±ð±È½ÏS5ÓëS3¡¢S2ÓëS6µÄ´óС¹Øϵ£®
£¨2£©ÒÑÖªÊýÁÐ{an}ΪµÈ²îÊýÁУ¬{an}µÄÇ°nÏîºÍΪSn£®Ö¤Ã÷£ºÈô´æÔÚÕýÕûÊýk£¬Ê¹ak+ak+1=0£¬ÔòSm=S2k-m£¨m¡ÊN*£¬m£¼2k£©£®
£¨3£©ÔڵȱÈÊýÁÐ{bn}ÖУ¬Éè{bn}µÄÇ°nÏî³Ë»ýTn=b1•b2•b3¡­bn£¬Àà±È£¨2£©µÄ½áÂÛ£¬Ð´³öÒ»¸öÓëTnÓйصÄÀàËƵÄÕæÃüÌ⣬²¢Ö¤Ã÷£®

·ÖÎö £¨1£©ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬ÓÉa4+a5=0£¬¿ÉµÃ${a}_{1}=-\frac{7}{2}d$£®·Ö±ðÀûÓõȲîÊýÁеÄÇ°nÏîºÍ¹«Ê½¿ÉµÃ£ºS5£¬S3£¬S2£¬S6£®¼´¿ÉµÃ³ö´óС¹Øϵ£®
£¨2£©ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬´æÔÚÕýÕûÊýk£¬Ê¹ak+ak+1=0£¬¿ÉµÃa1=$\frac{£¨1-2k£©d}{2}$£®×÷²îS2k-m-Sm¼´¿ÉµÃ³ö£®
£¨3£©ÔڵȱÈÊýÁÐ{bn}ÖУ¬Éè{bn}µÄÇ°nÏî³Ë»ýTn=b1•b2•b3¡­bn£¬Èô´æÔÚÕýÕûÊýk£¬Ê¹bkbk+1=1£¬ÔòTm=T2k-m£¨m¡ÊN*£¬m£¼2k£©£®ÀûÓõȱÈÊýÁеÄͨÏʽ¼°ÆäµÈ²îÊýÁеÄÇ°nÏîºÍ¹«Ê½¼´¿ÉµÃ³ö£®

½â´ð £¨1£©½â£ºÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬¡ßa4+a5=0£¬
¡à2a1+7d=0£¬½âµÃ${a}_{1}=-\frac{7}{2}d$£®
¡àS5=5a1+$\frac{5¡Á4}{2}d$=-$\frac{15}{2}$d£¬
S3=$3{a}_{1}+\frac{3¡Á2}{2}d$=-$\frac{15}{2}$d£¬
¡àS5=S3£®
S2=$2{a}_{1}+\frac{2¡Á1}{2}d$=-6d£»
S6=6a1+$\frac{6¡Á5}{2}d$=-6d£®
µ±d¡Ý0ʱ£¬S2¡ÝS6£®
µ±d£¼0ʱ£¬S2£¼S6£®
£¨2£©Ö¤Ã÷£ºÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬
¡ß´æÔÚÕýÕûÊýk£¬Ê¹ak+ak+1=0£¬
¡à2a1+£¨2k-1£©d=0£®
¡àa1=$\frac{£¨1-2k£©d}{2}$£®
ÔòS2k-m-Sm=£¨2k-m£©a1+$\frac{£¨2k-m£©£¨2k-m-1£©}{2}$d-[$m{a}_{1}+\frac{m£¨m-1£©}{2}d$]
=£¨2k-2m£©¡Á$\frac{£¨1-2k£©d}{2}$+[2k2-k£¨2m+1£©+m]d
=[-2k2+£¨2m+1£©k-m]d+[2k2-k£¨2m+1£©+m]d
=0£®
£¨3£©ÔڵȱÈÊýÁÐ{bn}ÖУ¬Éè{bn}µÄÇ°nÏî³Ë»ýTn=b1•b2•b3¡­bn£¬Èô´æÔÚÕýÕûÊýk£¬Ê¹bkbk+1=1£¬ÔòTm=T2k-m£¨m¡ÊN*£¬m£¼2k£©£®
Ö¤Ã÷£º¡ßbkbk+1=1£¬¡à${b}_{1}^{2}{q}^{2k-1}$=1£®
¡à$\frac{{T}_{2k-m}}{{T}_{m}}$=$\frac{{b}_{1}{b}_{2}•¡­•{b}_{2k-m}}{{b}_{1}{b}_{2}•¡­•{b}_{m}}$=$\frac{{b}_{1}^{2k-m}{q}^{1+2+¡­+£¨2k-m-1£©}}{{b}_{1}^{m}{q}^{1+2+¡­+£¨m-1£©}}$=$\frac{{b}_{1}^{2k-m}{q}^{£¨2k-m£©£¨2k-m-1£©}}{{b}_{1}^{m}{q}^{\frac{m£¨m-1£©}{2}}}$=$£¨{b}_{1}^{2}{q}^{2k-1}£©^{k-m}$=1£®
ÔòTm=T2k-m£¨m¡ÊN*£¬m£¼2k£©£®

µãÆÀ ±¾Ì⿼²éÁ˵ÝÍƹØϵµÄÓ¦ÓᢵȲîÊýÁеÄͨÏʽ¼°ÆäÇ°nÏîºÍ¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}x+2£¬£¨{x¡Ü2015}£©\\ f£¨{x-5}£©£¬£¨{x£¾2015}£©\end{array}$£¬Ôòf£¨2018£©=2015£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÔÚËıßÐÎABCDÖУ¬AB=8£¬BC=3£¬CD=5£¬¡ÏA=$\frac{¦Ð}{3}$£¬cos¡ÏADB=$\frac{1}{7}$£®
£¨¢ñ£©ÇóBDµÄ³¤£»
£¨¢ò£©ÇóÖ¤£º¡ÏABC+¡ÏADC=¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýfx£©=$\frac{{2}^{x}+a-2}{{2}^{x}+1}£¨x¡ÊR£©$£¬ÈôÂú×ãf£¨1£©=$\frac{1}{3}$
£¨1£©ÇóʵÊýaµÄÖµ£»
£¨2£©Ö¤Ã÷£ºf£¨x£©ÎªÆ溯Êý£®
£¨3£©Åжϲ¢Ö¤Ã÷º¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖª¡÷ABCµÄ¶¥µãB£¨-1£¬-3£©£¬AB±ßÉϵĸßCEËùÔÚÖ±Ïߵķ½³ÌΪx-3y-1=0£¬BC±ßÉÏÖÐÏßADËùÔÚÖ±Ïߵķ½³ÌΪ8x+9y-3=0£®Çó£º
£¨1£©µãAµÄ×ø±ê£»          
£¨2£©Ö±ÏßACµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÌÝÐÎABCDÖУ¬AB¡ÎCD£¬Ö±ÏßAB¡¢BC¡¢CD¡¢DA·Ö±ðÓëƽÃæ¦Á½»ÓÚµãE¡¢G¡¢F¡¢H£¬ÄÇôһ¶¨ÓÐG¡ÊÖ±ÏßEF£¬H¡ÊÖ±ÏßEF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑ֪˫ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1µÄ½¹¾àΪ10£¬µãP£¨2£¬1£©ÔÚËüµÄÒ»Ìõ½¥½üÏßÉÏ£®
£¨1£©ÇóË«ÇúÏߵıê×¼·½³Ì£»
£¨2£©ÇóÒÔË«ÇúÏßµÄÓÒ×¼ÏßΪ׼ÏßµÄÅ×ÎïÏߵıê×¼·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª[1+log£¨y+1£©£¨$\frac{sinx}{1+sinx}$£©]•[log£¨4+sinx£©£¨y+1£©]=1£®
£¨1£©ÊÔ½«y±íʾΪxµÄº¯Êýy=f£¨x£©£¬²¢Çó³ö¶¨ÒåÓòºÍÖµÓò£»
£¨2£©ÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃº¯Êýg£¨x£©=mf£¨x£©-$\sqrt{f£¨x£©}$+1ÓÐÁãµã£¿Èô´æÔÚ£¬Çó³ömµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ö¤Ã÷£ºx¡Ê[0£¬+¡Þ£©£¬ex+x3-2x2¡Ý£¨e-1£©x£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸