精英家教网 > 高中数学 > 题目详情
15.已知命题p:函数f(x)=(a2-1)x2-2(a-1)x+3的图象全在x轴上方,命题q:关于x方程x2-ax+a+3=0的两根均为负根,若p∧q是假命题,p∨q是真命题,求实数a的取值范围.

分析 由二次函数和二次方程的知识分类讨论分别可得pq为真时a的范围,再由复合命题的真假分类讨论由集合的运算可得.

解答 解:当a2-1=0,即a=1或a=-1时,若a=1则f(x)=3,满足图象全在x轴上方;
当a=-1时,f(x)=4x+3不满足图象全在x轴上方;
当a≠1且a≠-1时,则$\left\{\begin{array}{l}{{a}^{2}-1>0}\\{△=4(a-1)^{2}-12({a}^{2}-1)<0}\end{array}\right.$,解得a>1或a<-2
综合可得当p为真命题时,a≥1或a<-2;
∵关于x方程x2-ax+a+3=0的两根x1,x2均为负根,
∴△=a2-4(a+3)≥0,x1+x2=-$\frac{-a}{1}$<0且x1x2=$\frac{3}{1}$>0,
解得a≤-2;
∵p∧q是假命题,p∨q是真命题,∴p、q一真一假,
当p真q假时,可得a的范围为{a|a≥1或a<-2}∩{a|a>-2}={a|a≥1},
当p假q真时,可得a的范围为{a|-2≤a<1}∩{a|a≤-2}={a|a=-2},
综上可得a的取值范围为:{a|a≥1或a=-2},

点评 本题考查复合命题的真假,涉及二次函数的知识和分类讨论的思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设a=log0.32,b=20.3,c=0.30.4,则 a、b、c的大小关系是(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=(a-2)x-ax3在区间[-1,1]上的最大值为2,则a的取值范围是(  )
A.[2,10]B.[-1,8]C.[-2,2]D.[0,9]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.曲线C:y=xlnx在点M(e,e)处的切线方程为(  )
A.y=x-eB.y=x+eC.y=2x-eD.y=2x+e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=sin(2x+φ)(0<φ<π),若将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位后所得图象对应的函数为偶函数,则实数φ的值为(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知sin200°=a,则tan160°等于(  )
A.-$\frac{a}{\sqrt{1-{a}^{2}}}$B.$\frac{a}{\sqrt{1-{a}^{2}}}$C.-$\frac{\sqrt{1-{a}^{2}}}{a}$D.$\frac{\sqrt{1-{a}^{2}}}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足a1=2,an+an+1=2n(n∈N*),求数列{an}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)(x∈R)为奇函数,f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),则f(5)和f(2003)的值分别为(  )
A.0和2001B.1和$\frac{2001}{2}$C.$\frac{5}{2}$和$\frac{2003}{2}$D.5和2003

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f0(x)=sinx,f1(x)=f′0(x),f2(x)=f′1(x),…,fn+1(x)=f′n(x),n∈N,则f2016(x)=sinx.

查看答案和解析>>

同步练习册答案