精英家教网 > 高中数学 > 题目详情

【题目】在四面体SABC中若三条侧棱SASBSC两两互相垂直,且SA=1,SB=SC=,则四面体ABCD的外接球的表面积为( )

A.8πB.6πC.4πD.2π

【答案】B

【解析】

由题意一个四面体SABC的三条侧棱SASBSC两两互相垂直,可知,四面体SABC是长方体的一个角,扩展为长方体,两者的外接球相同,长方体的对角线就是球的直径,求出直径即可求出球的表面积.

四面体SABC中,共顶点S的三条棱两两相互垂直,且其长分别为1

所以四面体SABC是长方体的一个角,扩展为长方体,

又四面体SABC的四个顶点同在一个球面上,

而四面体SABC的外接球与长方体的外接球相同,长方体的对角线就是球的直径,

所以球的直径为:

外接球的表面积为:4π×R26π

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中为真命题的是(  )

A.命题“若,则”的否命题

B.命题“若xy,则x|y|”的逆命题

C.命题“若x1,则”的否命题

D.命题“已知,若,则ab”的逆命题、否命题、逆否命题均为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,点,过点的直线交圆两点.

1)试判断直线与圆的位置关系;

2)设弦的中点为,求的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,,当n≥2时,其前n项和满足,设数列的前n项和为,则满足≥5的最小正整数n是( )

A.10B.9C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上是增函数,,对于命题“若,则”,有下列结论:

①此命题的逆命题为真命题;

②此命题的否命题为真命题;

③此命题的逆否命题为真命题;

④此命题的逆命题和否命题有且只有一个为真命题.

其中正确的结论的序号为______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调递增区间.

(2)在ΔABC中,角ABC所对的边分别为abc,若f(A)=1,c=10,cosB=,求ΔABC的中线AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是正方形,交于点底面的中点.

1)求证:平面

2)求证:

3)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义域为R的周期函数最小正周期为2

f(1x)f(1x)当-1≤x≤0f(x)=-x.

(1)判断f(x)的奇偶性;

(2)试求出函数f(x)在区间[12]上的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.为曲线上的动点,点在射线上,且满足.

(Ⅰ)求点的轨迹的直角坐标方程;

(Ⅱ)设轴交于点,过点且倾斜角为的直线相交于两点,求的值.

查看答案和解析>>

同步练习册答案