精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=2cosx($\sqrt{3}$sinx+cosx)+m,(x∈R,m∈R).
(1)求f(x)的最小正周期;
(2)若f(x)在区间[0,$\frac{π}{2}$]上的最大值是6,求f(x)在区间[0,$\frac{π}{2}$]上的最小值.

分析 (1)利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性求得函数f(x)的最小正周期.
(2)由条件利用正弦函数的定义域和值域,求得m的值,从而求得f(x)在区间[0,$\frac{π}{2}$]上的最小值.

解答 解:(1)函数f(x)=2cosx($\sqrt{3}$sinx+cosx)+m
=$\sqrt{3}$sin2x+cos2x+1+m=2sin(2x+$\frac{π}{6}$)+1+m,
故函数f(x)的最小正周期为π.
(2)在区间[0,$\frac{π}{2}$]上,2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
故当2x+$\frac{π}{6}$=$\frac{π}{2}$时,f(x)取得最大值为2+1+m=6,∴m=3.
故当2x+$\frac{π}{6}$=$\frac{7π}{6}$时,f(x)取得最小值为-1+1+m=3.

点评 本题主要考查三角恒等变换,正弦函数的周期性、正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.如图,正方形边长是2,函数y=$\frac{1}{2x}$与正方形交于两点,向正方形内投飞镖,则飞镖落在阴影部分内的概率是$\frac{7-3ln2}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=Asin(ωx+φ),x∈R,(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示.
(Ⅰ)确定A,ω,φ的值,并写出函数f(x)的解析式;
(Ⅱ)描述函数y=f(x)的图象可由函数y=sinx的图象经过怎样的变换而得到;
(Ⅲ)若f($\frac{α}{2}$)=$\frac{10}{13}$($\frac{π}{3}$<α<$\frac{5π}{6}$),求tan2(α-$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,CAB=90°,AB=AC=2,AA1=$\sqrt{3}$,M为BC的中点,P为侧棱BB1上的动点.
(1)求证:平面APM⊥平面BB1C1C;
(2)试判断直线BC1与AP是否能够垂直.若能垂直,求PB的长;若不能垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.四面体ABCD中,AB=2,BC=3,CD=4,DB=5,AC=$\sqrt{13}$,AD=$\sqrt{29}$,则四面体ABCD外接球的表面积是29π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.抛物线y2=4x上一点M到焦点的距离为5,则点M的横坐标为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.《九章算术》是我国古代第一部数学专著,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节,第3节,第8节竹子的容积之和为(  )
A.$\frac{17}{6}$升B.$\frac{7}{2}$升C.$\frac{113}{66}$升D.$\frac{109}{33}$升

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2+cosα\\ y=4+sinα\end{array}\right.$,以坐标原点O为极点,x轴的正半轴为极轴的坐标系中,曲线C2的方程为ρ(cosθ-msinθ)+1=0(m为常数).
(1)求曲线C1,C2的直角坐标方程;
(2)设P点是C1上到x轴距离最小的点,当C2过点P时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若f(x)=loga(2+x)在区间(-2,+∞)是单调递减函数,则a的取值范围是(  )
A.(0,1)B.(0,2)C.(1,2)D.(1,+∞)

查看答案和解析>>

同步练习册答案