精英家教网 > 高中数学 > 题目详情
4.设Sn是等差数列{an}的前n项和,若S2=2,S4=10,则S6等于(  )
A.4B.12C.18D.24

分析 由于Sn是等差数列{an}的前n项和,可得S2,S4-S2,S6-S4成等差数列.代入即可得出.

解答 解:∵Sn是等差数列{an}的前n项和,
则S2,S4-S2,S6-S4成等差数列.
∴2(S4-S2)=S6-S4+S2
∴2(10-2)=S6-10+2,
解得S6=24.
故选:D.

点评 本题考查了等差数列的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.双曲线与椭圆4x2+y2=64有相同的焦点,它的一条渐近线为y=x,则双曲线的方程为y2-x2=24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}中a7+a9=16,a4=12,则a12=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等腰直角三角形ABC中,∠ACB=90°,在∠ACB内部任意作一条射线CM,与线段AB交于点M,则AM<AC的概率(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)若$\overrightarrow{a}$=(-3,4),$\overrightarrow{b}$=(2,-1),且($\overrightarrow{a}$-x$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$),求x的值;
(2)向量$\overrightarrow{OA}$=(k,12),$\overrightarrow{OB}$=(4,5),$\overrightarrow{OC}$=(10,k),当k为何值时,A,B,C三点共线?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=$\left\{\begin{array}{l}{\frac{{2}^{x}+2}{2},x≤1}\\{|lo{g}_{2}(x-1)|,x>1}\end{array}\right.$,则方程f[f(x)]=2实数根的个数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知f(2x+1)=$\frac{4x+1}{2x-1}$,求f(x)表达式和值域;
(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线l:A(x-2)+B(y+3)+C=0交圆M:(x-2)2+(y+3)2=$\frac{4}{3}$于P,Q两点,且A2+B2=3C2,则$\overrightarrow{MP}$•$\overrightarrow{MQ}$=(  )
A.-$\frac{1}{3}$B.-$\frac{2}{3}$C.-1D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2-2ax+3.
(1)若f(1)=2,求实数a的值;
(2)当x∈R时,f(x)≥0恒成立,求实数a的取值范围;
(3)当x∈(0,2]时,f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案