精英家教网 > 高中数学 > 题目详情
设实数x,y满足
x+y-3≤0
y-
1
2
x≥0
x-1≥0
,则 u=
y
x
-
x
y
的取值范围为(  )
A、[
1
2
,2]
B、[-
2
3
,2]
C、[-
2
3
3
2
]
D、[-
3
2
3
2
]
分析:画出可行域,将目标函数变形,赋予几何意义,是可行域中的点与点(0,0)连线的斜率,由图求出取值范围,从而求出所求即可.
解答:精英家教网解:画出可行域:
u=
y
x
-
x
y

设k=
y
x
表示可行域中的点与点(0,0)连线的斜率,
由图知k∈[
1
2
,2]
1
k
∈[
1
2
,2]
u=
y
x
-
x
y
=k-
1
k
取值范围为[-
3
2
3
2
]

故选:D
点评:本题考查画出可行域、关键将目标函数通过分离参数变形,赋予其几何意义、考查数形结合的数学思想方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设实数x,y满足 
x-y-2≤0
x+2y-5≥0
y-2≤0
,则u=
x2+y2
xy
的取值范围是(  )
A、[2,
5
2
]
B、[
5
2
10
3
]
C、[2,
10
3
]
D、[
1
4
,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足
x≤3
x-y+2≥0
x+y-4≥0
,则x2+y2的取值范围是
[8,34]
[8,34]

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足
x-y-2≤0
x+2y-4≥0
2y-3≤0
,则
y
x
的最大值是
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足
x-y-2≤0
x+2y-4≥0
2y-3≤0
,则z=
x
y
的最小值是
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海一模)设实数x,y满足
x+2y-4≤0
x-y≥0
y>0
,则x-2y的最大值为
4
4

查看答案和解析>>

同步练习册答案