精英家教网 > 高中数学 > 题目详情
7.如图,已知四棱锥V-ABCD中,四边形ABCD为正方形,VA=VB=VC=CD,若AB=2,VC=2.
(1)证明平面VAC⊥平面VBD;
(2)求正四棱锥V-ABCD的体积.

分析 (1)如图所示,设AC∩BD=O,连接VO.利用正方形的性质可得:BD⊥AC,OA=OC,再利用等腰三角形的性质可得VO⊥AC,利用线面垂直的判定定理可得AC⊥平面VBD,即可证明.
(2)由(1)可知:VO⊥AC,同理可得VO⊥BD,可得VO⊥平面ABCD.再利用四棱锥的体积计算公式即可得出.

解答 (1)证明:如图所示,设AC∩BD=O,连接VO.
∵四边形ABCD为正方形,
∴BD⊥AC,OA=OC,
又VA=VC,
∴VO⊥AC,
又VO∩BD=O,
∴AC⊥平面VBD,
∵AC?平面VAC,
∴VAC⊥平面CBD.
(2)解:由(1)可知:VO⊥AC,同理可得VO⊥BD,
AC∩BD=O,
∴VO⊥平面ABCD.
由正方形ABCD,AB=2,可得AC=2$\sqrt{2}$.
∴AO=$\sqrt{2}$,
又VA=2.
∴VO=$\sqrt{V{A}^{2}-A{O}^{2}}$=$\sqrt{2}$.
∴正四棱锥V-ABCD的体积V=$\frac{1}{3}{S}_{正方形ABCD}•VO$=$\frac{1}{3}×{2}^{2}×\sqrt{2}$=$\frac{4\sqrt{2}}{3}$.

点评 本题考查了正方形的性质、等腰三角形的性质、线面及其面面垂直的判定与性质定理、四棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数y=3+logax,(a>0且a≠1)必过定点(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.方程lnx+x=3的根所在的区间是(  )
A.(2,3)B.(3,4)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.lg2+lg5=(  )
A.lg7B.lg25C.1D.lg32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{{∫}_{x}^{0}(2t+2{-e}^{t})dt,x≤0}\end{array}\right.$,则函数f(x)的零点的个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=-cos($\frac{x}{2}$-$\frac{π}{3}$).
(1)求函数f(x)的单调递增区间.
(2)如何从函数y=cosx的图象变换得到函数y=f(x)的图象?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)己知f(x)=(x2-2ax)ex在[-1,1]上为单调函数,求正数a的取值范围.
(2)已知函数f(x)=lnx-$\frac{1}{2}$ax2+2x存在单调减区间,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设F1、F2是双曲线$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1的焦点,若双曲线上有一点P,且PF1⊥PF2,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=x2-2x+5,当x∈[t,t+1]时,求f(x)的最值.

查看答案和解析>>

同步练习册答案