(本小题满分13分)
已知函数是定义在上的奇函数,当时,
(其中e是自然对数的底, )
(1)求的解析式;
(2)设,求证:当时,;
(3)是否存在实数a,使得当时,的最小值是3 ?如果存在,求出实数a的值;如果不存在,请说明理由。
1) …………………4分
(2)证明:当且时,,
设
因为,所以当时,,此时单调递减;当时,,此时单调递增,所以
又因为,所以当时,,此时单调递减,所以
所以当时,即 …………
(3) 存在实数,使得当时,有最小值3…
【解析】解:.5.u设,则,所以
又因为是定义在上的奇函数,所以
故函数的解析式为 …………………4分
(2)证明:当且时,,
设
因为,所以当时,,此时单调递减;当时,,此时单调递增,所以
又因为,所以当时,,此时单调递减,所以
所以当时,即 ……………………8分
(3)解:假设存在实数,使得当时,有最小值是3,则
(ⅰ)当,时,.在区间上单调递增,,不满足最小值是3
(ⅱ)当,时,,在区间上单调递增,,也不满足最小值是3
(ⅲ)当,由于,则,故函数 是上的增函数.
所以,解得(舍去)
(ⅳ)当时,则
当时,,此时函数是减函数;
当时,,此时函数是增函数.
所以,解得
综上可知,存在实数,使得当时,有最小值3…………13分
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com