ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÒÔOΪԲÐÄÇÒÃæ»ý×îСµÄÔ²ÓëÖ±Ïßl£ºy=mx+£¨3-4m£©£¨m¡ÊR£©ºãÓй«¹²µãT£®
£¨1£©Çó³öTµãµÄ×ø±ê¼°Ô²OµÄ·½³Ì£»
£¨2£©Ô²OÓëxÖáÏཻÓÚA¡¢BÁ½µã£¬Ô²ÄÚ¶¯µãPʹ|
PA
|
¡¢|
PO
|
¡¢|
PB
|
³ÉµÈ±ÈÊýÁУ¬Çó
PA
PB
µÄ·¶Î§£»
£¨3£©ÉèµãT¹ØÓÚyÖáµÄ¶Ô³ÆµãΪQ£¬Ö±ÏßlÓëÔ²O½»ÓÚM¡¢NÁ½µã£¬ÊÔÇóS=
QM
QN
¡Átan¡ÏMQN
µÄ×î´óÖµ£¬²¢Çó³öSÈ¡×î´óֵʱµÄÖ±ÏßlµÄ·½³Ì£®
·ÖÎö£º£¨1£©ÓÉy=mx+£¨3-4m£©¹ý¶¨µãT£¨4£¬3£©¿ÉÖª£¬ÒªÊ¹Ô²OµÄÃæ»ý×îС£¬°ë¾¶×îС£¬´Ó¶ø¿ÉµÃ¶¨µãT£¨4£¬3£©ÔÚÔ²ÉÏ£¬¿ÉÇóÔ²OµÄ·½³Ì
£¨2£©¿ÉÏÈÉèP£¨x0£¬y0£©£¬Ôò¿ÆµÄ
x
2
0
+
y
2
0
£¼25
¡­£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬|
PO
|2=|
PA
|•|
PB
|
£¬ÀûÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ¿ÉµÃ£º
x
2
0
-
y
2
0
=
25
2
£¬ÁªÁ¢¿ÉÇóy0µÄ·¶Î§£¬´úÈë¿ÉÇóÇó
PA
PB
µÄ·¶Î§
£¨3£©Ö±ÏßlÓëÔ²OµÄÒ»¸ö½»µãΪM£¨4£¬3£©£¬¶¨µãQ£¨-4£¬3£©£¬ÓÉÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨Òå¿ÉµÃ£¬
OM
ON
=2S¡÷MQN£¬´Ó£¬ÒªÊ¹S×î´ó£¬ÔòÖ»ÒªS¡÷MNQ×î´ó£¬¼´Nµ½MQµÄ¾àÀë×î´ó¼´¿É
½â´ð£º½â£º£¨1£©ÒòΪֱÏßl£ºy=mx+£¨3-4m£©¹ý¶¨µãT£¨4£¬3£©¡­£¨2·Ö£©
ÓÉÌâÒ⣬ҪʹԲOµÄÃæ»ý×îС£¬¶¨µãT£¨4£¬3£©ÔÚÔ²ÉÏ£¬
ËùÒÔÔ²OµÄ·½³ÌΪx2+y2=25£»¡­£¨5·Ö£©
£¨2£©A£¨-5£¬0£©£¬B£¨5£¬0£©£¬ÉèP£¨x0£¬y0£©£¬Ôò
x
2
0
+
y
2
0
£¼25
¡­£¨1£©
¡ß
PA
=(-5-x0£¬-y0)
£¬
PB
=(5-x0£¬-y0)
£¬
ÓÉ|
PA
|£¬|
PO
|£¬|
PB
|
³ÉµÈ±ÈÊýÁеã¬|
PO
|2=|
PA
|•|
PB
|
£¬
¼´
x
2
0
+
y
2
0
=
(x0+5)2+
y
2
0
(x0-5)2+
y
2
0
£¬
ÕûÀíµÃ£º
x
2
0
-
y
2
0
=
25
2
£¬
¼´
x
2
0
=
25
2
+
y
2
0
¡­£¨2£©
ÓÉ£¨1£©£¨2£©µÃ£º0¡Ü
y
2
0
£¼
25
4
£¬
PA
PB
=(
x
2
0
-25)+
y
2
0
=2
y
2
0
-
25
2
£¬
µ±y0=0ʱÓÐ×îСֵ£¬µ±y02=
25
4
ʱ£¬º¯ÊýֵΪ0
¡à
PA
PB
¡Ê[-
25
2
£¬0)
£®£¨10·Ö£©
£¨3£©
QM
QN
¡Átan¡ÏMQN=|
QM
|•|
QN
|cos¡ÏMQN¡Átan¡ÏMQN

=|
QM
|•|
QN
|sin¡ÏMQN=2S¡÷MQN
£¬¡­£¨11·Ö£©
ÓÉÌâÒ⣬µÃÖ±ÏßlÓëÔ²OµÄÒ»¸ö½»µãΪM£¨4£¬3£©£¬ÓÖÖª¶¨µãQ£¨-4£¬3£©£¬
Ö±ÏßlMQ£ºy=3£¬
¡à|MQ|=8£¬Ôòµ±N£¨0£¬-5£©Ê±S¡÷MQNÓÐ×î´óÖµ32£®¡­£¨14·Ö£©
¼´
QM
QN
¡Átan¡ÏMQN
ÓÐ×î´óֵΪ64£¬
´ËʱֱÏßlµÄ·½³ÌΪ2x-y-5=0£®¡­£¨16·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÖ±Ïß·½³ÌµÄµãбʽÔÚÅжÏÖ±Ïߺã¹ý¶¨µãÖеÄÓ¦Óã¬Ö±ÏßÓëÔ²Ïཻ¹ØϵµÄÓ¦Óü°ÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾµÈ֪ʶµÄ×ÛºÏÓ¦ÓÃ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬ÒÑÖªÔ²ÐÄÔÚÖ±Ïßy=x+4ÉÏ£¬°ë¾¶Îª2
2
µÄÔ²C¾­¹ý×ø±êÔ­µãO£¬ÍÖÔ²
x2
a2
+
y2
9
=1(a£¾0)
ÓëÔ²CµÄÒ»¸ö½»µãµ½ÍÖÔ²Á½½¹µãµÄ¾àÀëÖ®ºÍΪ10£®
£¨1£©ÇóÔ²CµÄ·½³Ì£»
£¨2£©ÈôFΪÍÖÔ²µÄÓÒ½¹µã£¬µãPÔÚÔ²CÉÏ£¬ÇÒÂú×ãPF=4£¬ÇóµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Èñ½Ç¦ÁºÍ¶Û½Ç¦ÂµÄÖձ߷ֱðÓ뵥λԲ½»ÓÚA£¬BÁ½µã£®ÈôµãAµÄºá×ø±êÊÇ
3
5
£¬µãBµÄ×Ý×ø±êÊÇ
12
13
£¬Ôòsin£¨¦Á+¦Â£©µÄÖµÊÇ
16
65
16
65
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Èô½¹µãÔÚxÖáµÄÍÖÔ²
x2
m
+
y2
3
=1
µÄÀëÐÄÂÊΪ
1
2
£¬ÔòmµÄֵΪ
4
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ì©ÖÝÈýÄ££©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªA£¨0£¬1£©£¬B£¨0£¬-1£©£¬C£¨t£¬0£©£¬D(
3t
£¬0)
£¬ÆäÖÐt¡Ù0£®ÉèÖ±ÏßACÓëBDµÄ½»µãΪP£¬Ç󶯵ãPµÄ¹ì¼£µÄ²ÎÊý·½³Ì£¨ÒÔtΪ²ÎÊý£©¼°ÆÕͨ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¶«Ý¸Ò»Ä££©ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×ó½¹µãΪF1£¨-1£¬0£©£¬ÇÒÍÖÔ²CµÄÀëÐÄÂÊe=
1
2
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÍÖÔ²CµÄÉÏ϶¥µã·Ö±ðΪA1£¬A2£¬QÊÇÍÖÔ²CÉÏÒìÓÚA1£¬A2µÄÈÎÒ»µã£¬Ö±ÏßQA1£¬QA2·Ö±ð½»xÖáÓÚµãS£¬T£¬Ö¤Ã÷£º|OS|•|OT|Ϊ¶¨Öµ£¬²¢Çó³ö¸Ã¶¨Öµ£»
£¨3£©ÔÚÍÖÔ²CÉÏ£¬ÊÇ·ñ´æÔÚµãM£¨m£¬n£©£¬Ê¹µÃÖ±Ïßl£ºmx+ny=2ÓëÔ²O£ºx2+y2=
16
7
ÏཻÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÇÒ¡÷OABµÄÃæ»ý×î´ó£¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê¼°¶ÔÓ¦µÄ¡÷OABµÄÃæ»ý£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸