精英家教网 > 高中数学 > 题目详情

【题目】已知8件不同的产品中有3件次品,现对它们一一进行测试,直至找到所有次品.

(1)若恰在第2次测试时,找到第一件次品,第6次测试时,才找到最后一件次品,则共有多少种不同的测试方法?

(2)若至多测试5次就能找到所有次品,则共有多少种不同的测试方法?

【答案】1840;(2936.

【解析】

1)若恰在第2次测试时,才测到第一件次品,第6次才找到最后一件次品,则第2次,第6次,与第3至第5次选出1次,在这三个位置进行次品全排列,剩下的三个位置再对正品进行全排列,即可得答案.

2)分检测3次可测出3件次品,检测4次可测出3件次品,检测5次测出3件次品,对检测5次时再分为两类:一类是恰好第5次测到次品,一类是前5次测到都是正品,即可得答案.

1)若恰在第2次测试时,才测到第一件次品,第6次才找到最后一件次品,则第2次,第6次,与第3至第5次选出1次,在这三个位置进行次品全排列,剩下的三个位置再对正品进行全排列,所以共有:

2)检测3次可测出3件次品,不同的测试方法有种,

检测4次可测出3件次品,不同的测试方法有种;

检测5次测出3件次品,分为两类:一类是恰好第5次测到次品,一类是前5次测到都是正品,不同的测试方法共有种.

∴满足条件的不同测试方法的种数为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】先后抛掷一枚骰子两次,将出现的点数分别记为.

1)设向量,求的概率;

2)求在点数之和不大于5的条件下,中至少有一个为2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点M(-3,0),Q、P分别是x轴、y轴上的动点,且使MP⊥PQ,点N在直线PQ上,

(1)求动点N的轨迹C的方程.

(2)过点T(-1,0)作直线l与轨迹C交于两点A、B,问:在x轴上是否存在一点D,使△ABD为等边三角形;若存在,试求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2019·清远期末]一只红铃虫的产卵数和温度有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:

温度

20

25

30

35

产卵数/个

5

20

100

325

(1)根据散点图判断哪一个更适宜作为产卵数关于温度的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程(数字保留2位小数);

(3)要使得产卵数不超过50,则温度控制在多少以下?(最后结果保留到整数)

参考数据:

5

20

100

325

1.61

3

4.61

5.78

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在二项式的展开式中,

1)若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(最后结果用算式表达,不用计算出数值)

2)若展开式前三项的二项式系数的和等于79,求展开式中系数最大的项.(最后结果用算式表达,不用计算出数值)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足:(1);(2);(3)时,.大小关系

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机作为客户端越来越为人们所青睐,通过手机实现衣食住行消费已经成为一种主要的消费方式.在某市,随机调查了200名顾客购物时使用手机支付的情况,得到如下的2×2列联表,已知从使用手机支付的人群中随机抽取1人,抽到青年的概率为.

(I)根据已知条件完成2×2列联表,并根据此资料判断是否有99.5%的把握认为“市场购物用手机支付与年龄有关”?

2×2列联表:

青年

中老年

合计

使用手机支付

120

不使用手机支付

48

合计

200

(Ⅱ)现采用分层抽样的方法从这200名顾客中按照“使用手机支付”和“不使用手机支付”抽取一个容量为10的样本,再从中随机抽取3人,求这三人中“使用手机支付”的人数的分布列及期望.

附:

0.05

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为 (t为参数),直线的参数方程为 (为参数).设的交点为,当变化时,的轨迹为曲线

(1)写出的普通方程;

(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,设的交点,求的极径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,决定从本单位全体650人中采用分层抽样的办法抽取50人进行问卷调查,得到了如下列联表:

喜欢户外运动

不喜欢户外运动

总计

男性

5

女性

10

总计

50

已知在这50人中随机抽取1人,抽到喜欢户外运动的员工的概率是.

1)请将上面的列联表补充完整;

2)求该公司男、女员工各多少人;

3)在犯错误的概率不超过0.005的前提下能否认为喜欢户外运动与性别有关?并说明你的理由.

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

同步练习册答案