精英家教网 > 高中数学 > 题目详情
已知椭圆,过点且离心率为.

(1)求椭圆的方程;
(2)已知是椭圆的左右顶点,动点M满足,连接AM交椭圆于点P,在x轴上是否存在异于A、B的定点Q,使得直线BP和直线MQ垂直.
(1);(2)存在,

试题分析:(1)由离心率,所以①,再把点代入椭圆中得:②,最后③,由①②③三式求出,即可写出椭圆方程;
假设存在,设,则直线的方程, 可得, 并设定点,由,直线与直线斜率之积为-1,即 ,化简得 ,又因为 ,得,可求出,继而得到定点点坐标.
(1)由题意得:
 得
所以,椭圆方程为
(2)设,则直线的方程
可得,       
设定点
,即 ,  
                       
又因为,所以
进而求得,故定点为.           
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

椭圆的离心率.

(1)求椭圆C的方程;
(2)如图,是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交轴于点N,直线AD交BP于点M。设BP的斜率为,MN的斜率为.证明:为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的斜率互为相反数,求证:直线l过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在棱长为的正方体中,点是正方体棱上一点(不包括棱的端点),
①若,则满足条件的点的个数为________
②若满足的点的个数为,则的取值范围是________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别是椭圆:的左、右焦点,过倾斜角为的直线与该椭圆相交于P,两点,且.则该椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点,圆C:与椭圆E:有一个公共点分别是椭圆的左、右焦点,直线与圆C相切.

(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆上两点,点关于轴的对称点为(异于点),若直线分别交轴于点,则(     )
A.0B.1C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的右焦点为,椭圆轴正半轴交于点,与轴正半轴交于,且,过点作直线交椭圆于不同两点,则直线的斜率的取值范围是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的一个焦点作垂直于实轴的弦是另一焦点,若∠,则椭圆的离心率等于(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案