精英家教网 > 高中数学 > 题目详情
如图,已知三棱柱ABC-A1B1C1的侧棱长与底面边长都等于1,A1在底面ABC上的射影D为BC的中点,则侧棱AA1与底面ABC所成角的大小为______,此三棱柱的体积为______.
由题意可得A1D⊥平面ABC∴∠A1AD即为直线与平面所成的角
在Rt△A1AD中,AA1=1,AD=
3
2
A1D=
1
2

cos∠A1AD=
AD
AA1
=
3
2
A1AD=
π
6

即直线AA1与平面ABC所成的角为
π
6

S△ABC=
1
2
×1×
3
2
=
3
4

VABC-A1B1C1=
3
4
×
1
2
=
3
8

故答案为:
π
6
3
8
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,正方体ABCD-A1B1C1D1中,P为面ADD1A1的中心,Q为DCC1D1的中心,则向量
PB
QA1
夹角的余弦值为(  )
A.
6
6
B.-
6
6
C.
1
6
D.-
1
6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正三角形PAD,正方形ABCD,平面PAD⊥平面ABCD,E为PD的中点.
(1)求证:CD⊥AE;
(2)求证:AE⊥平面PCD;
(3)求直线AC与平面PCD所成的角的大小的正弦..

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正四棱柱ABCD-A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F.
(Ⅰ)求证:A1C⊥平面BED;
(Ⅱ)求A1B与平面BDE所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则AD与平面ABC所成之角为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在线段AD上,且PG=4,AG=
1
3
GD
,BG⊥GC,BG=GC=2,E是BC的中点.
(1)求异面直线GE与PC所成角的余弦值;
(2)求DG与平面PBG所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四面体ABCD,AD=CD,∠ADB=∠CDB=120°,且平面ABD⊥平面BCD.
(Ⅰ)求证:BD⊥AC;
(Ⅱ)求直线CA与平面ABD所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱ABC-A1B1C1中,AB=BC=CA=a,AA1=
2
a
,求AB1与侧面AC1所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在二面角α-l-β中,A、B∈α,C、D∈l,ABCD为矩形,p∈β,PA⊥α,且PA=AD,M、N依次是AB、PC的中点,
(1)求二面角α-l-β的大小
(2)求证:MN⊥AB
(3)求异面直线PA和MN所成角的大小.

查看答案和解析>>

同步练习册答案