精英家教网 > 高中数学 > 题目详情

 (本小题满分12分)函数f(x)=loga(x2-4ax+3a2), 0<a<1, 当x∈[a+2,a+3]时,恒有|f(x)|≤1,试确定a的取值范围.

 

【答案】

.

【解析】本题考查对数型复合函数,求其定义域时要注意底数大于0且不等式于1,第二问考查了利用复合函数的单调性转化为不等式求参数,有一定难度.

求函数f(x)的定义域,依据对数函数的定义,底数大于0且不等于1,真数大于0,转化为不等式用参数a表示出函数f(x)的定义域;由这个结论知[a+2,a+3]必为(0,a)或者(3a,+∞)的子集,故[a+2,a+3]必为f(x)的单调区间,欲满足|f(x)|≤1,只须|f(a+2)|≤1,|f(a+3)|≤1同时成立,解此二不等式即可求得a的取值范围.

解:f(x)=loga(x2-4ax+3a2)= loga(x-3a)(x-a)

∵|f(x)|≤1恒成立,

∴    -1≤loga(x-3a)(x-a)≤1                   ………………2分

∵    0<a<1.                                

∴a≤(x-3a)(x-a)≤对x∈[a+2,a+3]恒成立.      ………………5分

 令h(x)= (x-3a)(x-a),                          

  其对称轴x=2a.     又 2a<2,   2<a+2,

∴当x∈[a+2,a+3]时,

h(x)min=h(a+2),h(x)max=h(a+3).        ……………8分

.                             ………………12分        

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案