精英家教网 > 高中数学 > 题目详情
已知公差不为0的等差数列{an}的首项a1=a(a∈R),设数列{an}的前n项和为Sn,且a1、a2、a4恰为等比数列{bn}的前三项.
(1)求数列{an}的通项公式及Sn
(2)当n≥2时,比较An=
1
S1
+
1
S2
+…+
1
Sn
Bn=
1
b1
+
1
b2
+…+
1
bn
的大小.(可使用结论:n≥2时,2n>n+1)
分析:(1)设等差数列{an}的公差为d,由a22=a1a4,得(a1+d)2=a1(a1+3d),由此能够求出数列{an}的通项公式及Sn
(2)由
1
Sn
=
2
a
(
1
n
-
1
n+1
)
,知An=
1
S1
+
1
S2
+…+
1
Sn
=
2
a
(1-
1
n+1
)
.由{bn}中,b1=a,b2=2a,知{bn}是首项为a,公比为2的等比数列,由此能导出当a>0时,An<Bn;当a<0时,An>Bn
解答:解:(1)设等差数列{an}的公差为d,由a22=a1a4,…(1分)
(a1+d)2=a1(a1+3d)…(2分)
∵d≠0,∴d=a,
∴an=na1Sn=
an(n+1)
2

(2)∵
1
Sn
=
2
a
(
1
n
-
1
n+1
)

An=
1
S1
+
1
S2
+…+
1
Sn

=
2
a
(1-
1
n+1
)

∵{bn}中,b1=a,b2=2a,
∴{bn}是首项为a,公比为2的等比数列,
bn=a×2n-1
Bn=
1
b1
+
1
b2
+…+
1
bn

=
2
a
(1-
1
2 n
)

∵当n≥2时,2n>n+1,
1-
1
n+1
<1-
1
2 n

∴当a>0时,An<Bn;当a<0时,An>Bn
点评:本题首先考查等差数列、等比数列的基本量、通项,结合含两个变量的不等式的处理问题,对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的前n项和为Sn,且满足S5=3a5-2,又a1,a2,a5依次成等比数列,数列{bn}满足b1=-9,bn+1=bn+
k
2
an+1
2
,(n∈N+)其中k为大于0的常数.
(1)求数列{an},{bn}的通项公式;
(2)记数列an+bn的前n项和为Tn,若当且仅当n=3时,Tn取得最小值,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区二模)已知公差不为0的等差数列{an}的前n项和为Sn,S3=a4+6,且a1,a4,a13成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{
1Sn
}的前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知公差不为0的等差数列{an}满足a1,a3,a4成等比数列,Sn为{an}的前n项和,则
S2-S1
S3-S2
的值为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)已知公差不为0的等差数列{an}的前3项和S3=9,且a1,a2,a5成等比数列.
(1)求数列{an}的通项公式和前n项和Sn
(2)设Tn为数列{
1anan+1
}的前n项和,若Tn≤λan+1对一切n∈N*恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的首项a1=a,a∈N*,设数列的前n项和为Sn,且
1
a1
1
a2
1
a4
成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,若A2011=
2011
2012
,求a的值.

查看答案和解析>>

同步练习册答案