精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=cosx(x∈(0,2π))有两个不同的零点x1、x2 , 方程f(x)=m有两个不同的实根x3、x4 . 若把这四个数按从小到大排列构成等差数列,则实数m的值为(
A.
B.
C.
D.-

【答案】D
【解析】解:由题意可知:x1= ,x2= ,且x3、x4只能分布在x1、x2的中间或两侧,若x3、x4只能分布在x1、x2的中间,则公差d= =
故x3、x4分别为 ,此时可求得m=cos =﹣
若x3、x4只能分布在x1、x2的两侧,则公差d= =π,
故x3、x4分别为 ,不合题意.
故选D
【考点精析】本题主要考查了等差数列的性质和函数的零点的相关知识点,需要掌握在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列;函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在正三棱柱ABCA1B1C1中,AB=2,AA1=2,由顶点B沿棱柱侧面(经过棱AA1)到达顶点C1,与AA1的交点记为M.求:

(1)三棱柱侧面展开图的对角线长;

(2)从B经M到C1的最短路线长及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,角A,B,C的对边分别为a,b,c,a=b(sinC+cosC).
(Ⅰ)求∠ABC;
(Ⅱ)若∠A= ,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满8局时停止.设甲在每局中获胜的概率为,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为.

(1)求的值;

(2)设表示比赛停止时已比赛的局数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,且f(x)=x有唯一解,,xn+1=f(xn)(n∈N*).

(1)求实数a的值;

(2)求数列{xn}的通项公式;

(3)若,数列b1,b2-b1,b3-b2,…,bn-bn-1是首项为1,公比为的等比数列,记cn=anbn,求数列{cn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有五个命题:

①函数y=sin4x-cos4x的最小正周期是

②终边在y轴上的角的集合是{α|α=

③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;

④把函数

⑤函数

其中真命题的序号是__________(写出所有真命题的编号

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设斜率为2的直线l,过双曲线的右焦 点,且与双曲线的左、右两支分别相交,则双曲线离心率,e的取值范围是

A. e B. e C. 1e D. 1e

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在两个正实数 ,使得等式成立,其中为自然对数的底数,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分分)

如图,平行四边形中, 平面 ,点中点,连结

)若 ,求证:平面平面

)若,试探究在直线上有几个点,使得,并说明理由.

查看答案和解析>>

同步练习册答案