精英家教网 > 高中数学 > 题目详情
空间四边形ABCD的各边与两条对角线的长都为1,点P在边AB上移动,点Q在CD上移动,则点P和Q的最短距离为(    )

A.                B.                   C.                 D.

答案:B

解析:根据已知条件构造几何模型.

    如图,因P、Q分别为AB、CD上的可移动点,于是P和Q的最短距离可转化为求异面直线AB和CD间的距离,由上面第13题(2)可知P、Q的最短距离为,故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网空间四边形ABCD的两条对棱AC、BD的长分别为5和4,则平行于两条对棱的截面四边形EFGH在平移过程中,周长的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间四边形ABCD的每条边和对角线的长都等于1,点E、F分别是AB、AD的中点,则
EF
DC
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

空间四边形ABCD的对棱AD,BC成60°的角,且AD=BC=a,平行于AD与BC的截面分别交AB,AC,CD,BD于E、F、G、H.
(1)求证:四边形EFGH为平行四边形;
(2)E在AB的何处时截面EFGH的面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间四边形ABCD的各边及对角线相等,AC与平面BCD所成角的余弦值是
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,一空间四边形ABCD的对边AB与CD,AD与BC都互相垂直,用向量证明:AC与BD也互相垂直.

查看答案和解析>>

同步练习册答案