精英家教网 > 高中数学 > 题目详情
6.如图|$\overrightarrow{OA}|=|\overrightarrow{OB}$|=1,$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为120°,$\overrightarrow{OC}$与$\overrightarrow{OA}$的夹角为30°,|$\overrightarrow{OC}$|=5,则$\overrightarrow{OC}$=$\frac{10\sqrt{3}}{3}$$\overrightarrow{OA}$+$\frac{5\sqrt{3}}{3}$$\overrightarrow{OB}$.(用$\overrightarrow{OA}和\overrightarrow{OB}$表示)

分析 以O为直角坐标原点,OA所在直线为x轴,建立直角坐标系求得A,B,C的坐标,设$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,利用向量坐标运算、向量基本定理解方程即可得出.

解答 解:如图所示,建立直角坐标系.
由$\overrightarrow{OC}$与$\overrightarrow{OA}$的夹角为30°,|$\overrightarrow{OC}$|=5,可得C($\frac{5\sqrt{3}}{2}$,$\frac{5}{2}$),
|$\overrightarrow{OA}|=|\overrightarrow{OB}$|=1,$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为120°,
可得B(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),A(1,0),
设$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,
则($\frac{5\sqrt{3}}{2}$,$\frac{5}{2}$)=m(1,0)+n(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)
∴$\frac{5\sqrt{3}}{2}$=m-$\frac{1}{2}$n,$\frac{5}{2}$=$\frac{\sqrt{3}}{2}$n.
解得n=$\frac{5\sqrt{3}}{3}$,m=$\frac{10\sqrt{3}}{3}$.
∴$\overrightarrow{OC}$=$\frac{10\sqrt{3}}{3}$$\overrightarrow{OA}$+$\frac{5\sqrt{3}}{3}$$\overrightarrow{OB}$.
故答案为:$\frac{10\sqrt{3}}{3}$$\overrightarrow{OA}$+$\frac{5\sqrt{3}}{3}$$\overrightarrow{OB}$.

点评 本题考查了向量坐标运算、向量基本定理,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\left\{\begin{array}{l}2x,0≤x≤1\\ 1,1<x<2\\ 3,x≥2\end{array}$的值域是(  )
A.RB.[0,2]∪{3}C.[0,+∞)D.[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若f(x)=(x-a)(x+4)为偶函数,则实数a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知A={x|2a≤x≤a+3},B={x|x2-6x+5>0}.
(1)若A∩B=∅,求a的取值范围.
(2)是否存在实数a,使得A∪B=R,若存在,求出a的取值集合,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图所示的程序框图,如果输入m=30,n=18,则输出的m的值为(  )
A.0B.6C.12D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.现代城市大多是棋盘式布局(如上海道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义A(x1,y1)、B(x2,y2)两点间的“直角距离”为:D(AB)=|x1-x2|+|y1-y2|.
(1)在平面直角坐标系中,写出所有满足到原点的“直角距离”
为2的“格点”的坐标;(格点指横、纵坐标均为整数的点)
(2)定义:“圆”是所有到定点“直角距离”为定值的点组成的图形,点A(1,3),B(1,1),C(3,3),求经过这三个点确定的一个“圆”的方程,并画出大致图象;
(3)设P(x,y),集合B表示的是所有满足D(PO)≤1的点P所组成的集合,
点集A={(x,y)|-1≤x≤1,-1≤y≤1},
求集合Q={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的左、右焦点分别为F1、F2,P为C的右支上一点,且|PF2|=|F1F2|,则cos∠F1F2P等于(  )
A.$\frac{7}{9}$B.-$\frac{5}{6}$C.-$\frac{7}{18}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知全集U=R,集合A={x|x2-3x+2≤0},B={x|x2-2ax+a≤0,a∈R}.
(1)当A∩B=A时,求a的取值范围;
(2)当A∪B=A时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点与短轴的两端点的连线互相垂直,且此焦点和长轴上较近的端点距离为4$\sqrt{3}$-2$\sqrt{6}$,则此椭圆方程为$\frac{{x}^{2}}{48}$+$\frac{{y}^{2}}{24}$=1.

查看答案和解析>>

同步练习册答案