精英家教网 > 高中数学 > 题目详情

如图,设ABC A1B1C1是直三棱柱,AB = AC,∠BAC = 90°,M、Q分别是CC1、BC的中点,P点在A1B1上且A1P ׃ PB1 = 1 ׃ 2。如果AA1 = AB,则AM与PQ所成的角等于(   )

(A)90°       (B)arccos      (C)60°       (D)30°

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱柱ABC-A1B1C1的所有棱长都相等,且侧棱垂直于底面,由B沿棱柱侧面经过棱C C1到点A1的最短路线长为2
5
,设这条最短路线与CC1的交点为D.
(1)求三棱柱ABC-A1B1C1的体积;
(2)在平面A1BD内是否存在过点D的直线与平面ABC平行?证明你的判断;
(3)证明:平面A1BD⊥平面A1ABB1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠BAC=90°,作AA1⊥BC,A1A2⊥AB,A2A3⊥BC,A3A4⊥AB,A4A5⊥BC,A5A6⊥AB,A6A7⊥BC,A1,A2,A3,A4,A5,A6,A7分别为垂足:
(1)△CAA1,△A1A2A3,△A3A4A5,△A5A6A7的周长和面积是否分别成等比数列?试给出证明.
(2)若AB=4,BC=5,分别求出(1)题中4个三角形的周长和△A1A2A3的面积.
(3)如果把题设中的作法一直进行下去,并把所得类同于(1)题中的4个三角形的所有三角形的面积从大到小排成一个数列{Sn},设AB=c,AC=b,求{Sn}的通项公式和△A11A12A13的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在 正三棱柱ABC-A1 B1 C1中,底面边长为
2

(1)设侧棱长为1,求证A B1⊥B C1
(2)设A B1与B C1成600角,求侧棱长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)如图,在直三棱柱ABC-A1B1C1中,AC=BC=2,CC1>AC,∠ACB=90°,异面直线AC1与BA1所成角的大小为arccos
30
10

(1)求三棱柱ABC-A1B1C1的体积;
(2)设D为线段A1B1的中点,求二面角A-C1D-A1的大小.(结果用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1).将△AEF、△CFP分别沿EF、PF折起到△A1EF和△C1FP的位置,使二面角A1-EF-B和C1-PF-B均成直二面角,连结A1B、A1P、EC1(如图2)
(1)求证:A1E⊥平面BEP;
(2)设正△ABC的边长为3,以
EB
EF
EA
为正交基底,建立空间直角坐标系.
①求点C1的坐标;
②直线EC1与平面C1PF所成角的大小;
③求二面角B-A1P-F的余弦值.
精英家教网

查看答案和解析>>

同步练习册答案