【题目】已知正项数列{an}的前n项和为Sn,且a1=1,=Sn+1+Sn.
(1)求{an}的通项公式;
(2)设,求数列{bn}的前n项和Tn.
【答案】(1) ; (2).
【解析】
(1)a=Sn+1+Sn①,当n≥2时,a=Sn+Sn-1②,①-②得a-a=an+1+an可推出an+1-an=1,即可求解(2)利用错位相减法求和即可.
(1)因为a=Sn+1+Sn,①
所以当n≥2时,a=Sn+Sn-1,②
①-②得a-a=an+1+an,即(an+1+an)(an+1-an)=an+1+an,
因为an>0,所以an+1-an=1,所以数列{an}从第二项起,是公差为1的等差数列.
由①知a=S2+S1,因为a1=1,所以a2=2,
所以当n≥2时,an=2+(n-2)×1,即an=n.③
又因为a1=1也满足③式,所以an=n(n∈N*).
(2)由(1)得=(2n-1)·2n,Tn=2+3·22+5·23+…+(2n-1)·2n,④
2Tn=22+3·23+…+(2n-3)·2n+(2n-1)·2n+1,⑤
④-⑤得-Tn=2+2×22+…+2×2n-(2n-1)·2n+1,
所以-Tn=2+-(2n-1)·2n+1,
故Tn=(2n-3)·2n+1+6.
科目:高中数学 来源: 题型:
【题目】(本题14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)请画出上表数据的散点图;并指出x,y 是否线性相关;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考:用最小二乘法求线性回归方程系数公式,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1的参数方程为 ,当t=﹣1时,对应曲线C1上一点A,且点A关于原点的对称点为B.以原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为 .
(1)求A,B两点的极坐标;
(2)设P为曲线C2上的动点,求|PA|2+|PB|2的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn , 且a2=3,S6=36.
(1)求数列{an}的通项公式;
(2)令bn= ,求数列{an}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆C: + =1(a>b>0)的左右焦点分别为F1 , F2 , 离心率为 ,以原点为圆心,以椭圆C的短半轴长为半径的圆与直线x﹣y+ =0相切,过点F2的直线l与椭圆C相交于M,N两点.
(1)求椭圆C的方程;
(2)若 =3 ,求直线l的方程;
(3)求△F1MN面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}前三项的和为﹣3,前三项的积为8.
(I)求等差数列{an}的通项公式;
(II)若a2 , a3 , a1成等比数列,求数列{|an|}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A是单位圆x2+y2=1上的任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.
(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;
(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: + =1(a>b>0)过点 ,且离心率e为 .
(1)求椭圆E的方程;
(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G 与以线段AB为直径的圆的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:=1(a>b>0)的离心率e=,点P(-,1)在该椭圆上.
(1)求椭圆C的方程;
(2)若点A,B是椭圆C上关于直线y=kx+1对称的两点,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com