精英家教网 > 高中数学 > 题目详情

【题目】已知正项数列{an}的前n项和为Sn,且a1=1,=Sn+1+Sn.

(1)求{an}的通项公式;

(2)设,求数列{bn}的前n项和Tn.

【答案】(1) ; (2).

【解析】

(1)a=Sn+1+Sn①,当n≥2时,a=Sn+Sn-1②,①-②得a-a=an+1+an可推出an+1-an=1,即可求解(2)利用错位相减法求和即可.

(1)因为a=Sn+1+Sn,①

所以当n≥2时,a=Sn+Sn-1,②

①-②得a-a=an+1+an,即(an+1+an)(an+1-an)=an+1+an

因为an>0,所以an+1-an=1,所以数列{an}从第二项起,是公差为1的等差数列.

由①知a=S2+S1,因为a1=1,所以a2=2,

所以当n≥2时,an=2+(n-2)×1,即an=n.③

又因为a1=1也满足③式,所以an=n(n∈N*).

(2)由(1)得=(2n-1)·2n,Tn=2+3·22+5·23+…+(2n-1)·2n,④

2Tn=22+3·23+…+(2n-3)·2n+(2n-1)·2n+1,⑤

④-⑤得-Tn=2+2×22+…+2×2n-(2n-1)·2n+1

所以-Tn=2+-(2n-1)·2n+1

故Tn=(2n-3)·2n+1+6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本题14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:


3

4

5

6


2.5

3

4

4.5

1)请画出上表数据的散点图;并指出xy 是否线性相关;

2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?

(参考:用最小二乘法求线性回归方程系数公式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程为 ,当t=﹣1时,对应曲线C1上一点A,且点A关于原点的对称点为B.以原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为
(1)求A,B两点的极坐标;
(2)设P为曲线C2上的动点,求|PA|2+|PB|2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn , 且a2=3,S6=36.
(1)求数列{an}的通项公式;
(2)令bn= ,求数列{an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆C: + =1(a>b>0)的左右焦点分别为F1 , F2 , 离心率为 ,以原点为圆心,以椭圆C的短半轴长为半径的圆与直线x﹣y+ =0相切,过点F2的直线l与椭圆C相交于M,N两点.
(1)求椭圆C的方程;
(2)若 =3 ,求直线l的方程;
(3)求△F1MN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}前三项的和为﹣3,前三项的积为8.
(I)求等差数列{an}的通项公式;
(II)若a2 , a3 , a1成等比数列,求数列{|an|}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A是单位圆x2+y2=1上的任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.
(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;
(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: + =1(a>b>0)过点 ,且离心率e为

(1)求椭圆E的方程;
(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G 与以线段AB为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:=1(a>b>0)的离心率e=,P(-,1)在该椭圆上.

(1)求椭圆C的方程;

(2)若点A,B是椭圆C上关于直线y=kx+1对称的两点,求实数k的取值范围.

查看答案和解析>>

同步练习册答案