【题目】如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.
(Ⅰ)求证:MN∥平面BDE;
(Ⅱ)求二面角C﹣EM﹣N的正弦值;
(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为 ,求线段AH的长.
【答案】(Ⅰ)证明:取AB中点F,连接MF、NF,
∵M为AD中点,∴MF∥BD,
∵BD平面BDE,MF平面BDE,∴MF∥平面BDE.
∵N为BC中点,∴NF∥AC,
又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.
∵DE平面BDE,NF平面BDE,∴NF∥平面BDE.
又MF∩NF=F.
∴平面MFN∥平面BDE,则MN∥平面BDE;
(Ⅱ)解:∵PA⊥底面ABC,∠BAC=90°.
∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.
∵PA=AC=4,AB=2,
∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E(0,2,2),
则 , ,
设平面MEN的一个法向量为 ,
由 ,得 ,取z=2,得 .
由图可得平面CME的一个法向量为 .
∴cos< >= .
∴二面角C﹣EM﹣N的余弦值为 ,则正弦值为 ;
(Ⅲ)解:设AH=t,则H(0,0,t), , .
∵直线NH与直线BE所成角的余弦值为 ,
∴|cos< >|=| |=| |= .
解得:t=4.
∴当H与P重合时直线NH与直线BE所成角的余弦值为 ,此时线段AH的长为4.
【解析】(Ⅰ)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE;
(Ⅱ)由PA⊥底面ABC,∠BAC=90°.可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角C﹣EM﹣N的余弦值,进一步求得正弦值;
(Ⅲ)设AH=t,则H(0,0,t),求出 的坐标,结合直线NH与直线BE所成角的余弦值为 列式求得线段AH的长.
【考点精析】解答此题的关键在于理解异面直线及其所成的角的相关知识,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系,以及对平面与平面平行的判定的理解,了解判断两平面平行的方法有三种:用定义;判定定理;垂直于同一条直线的两个平面平行.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=e2x(ax2+2x﹣1),a∈R.
(Ⅰ)当a=4时,求证:过点P(1,0)有三条直线与曲线y=f(x)相切;
(Ⅱ)当x≤0时,f(x)+1≥0,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数交轴于两点(不重合),交轴于点. 圆过三点.下列说法正确的是( )
① 圆心在直线上;
② 的取值范围是;
③ 圆半径的最小值为;
④ 存在定点,使得圆恒过点.
A. ①②③B. ①③④C. ②③D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在xOy平面上,将双曲线的一支 及其渐近线和直线、围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周所得的几何体为,过 作的水平截面,计算截面面积,利用祖暅原理得出体积为________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校有初级教师21人,中级教师14人,高级教师7人,现采用分层抽样的方法从这些教师中抽取6人对绩效工资情况进行调查.
(1)求应从初级教师,中级教师,高级教师中分别抽取的人数;
(2)若从抽取的6名教师中随机抽取2名做进一步数据分析,求抽取的2名均为初级教师的概率。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com