精英家教网 > 高中数学 > 题目详情
已知双曲线,过点P(0,1)作斜率k<0的直线l与双曲线恰有一个交点.
(1)求直线l的方程;
(2)若点M在直线l与x≥0,y≥0所围成的三角形的三条边上及三角形内运动,求z=-x+y的最小值.
【答案】分析:本题考查的知识点是直线的一般式方程,及简单的线性规划,(1)由过点P(0,1)作斜率k<0的直线l与双曲线恰有一个交点.联立直线与双曲线的方程,则易得到直线的斜率,代入即可得到直线的方程.(2)我们画出直线l与x≥0,y≥0所围成的三角形,求出三角形的各个顶点,代入即可得到目标函数z=-x+y的最小值.
解答:解:(1)由于直线l过P(0,1)点,
设直线l的方程为:y=kx+1(k<0)
将直线方程代入双曲线方程得:
-k2)x2-2kx-2=0①
由直线l与双曲线恰有一个交点,则方程①的△=0
即4k2+8(-k2)=0
解得k=-1
∴直线l的方程为:y=-x+1
即:x+y-1=0
(2)直线l与x≥0,y≥0所围成的三角形如下图示:

由图可知:当经x=1,y=0时,目标函数z=-x+y有最小值-1
点评:在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C过点P(
3
,2
2
)
,一条渐近线方程为y=
2
3
3
x
,双曲线C 的标准方程为
y2
4
-
x 2
3
=1
y2
4
-
x 2
3
=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线数学公式,过点P(0,1)作斜率为k的直线l与双曲线恰有一个公共点,求满足条件的直线l.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年甘肃省兰州外国语高级中学高二(上)期末数学试卷(理科)(解析版) 题型:解答题

已知双曲线,过点P(1,1)能否作一条直线l,与双曲线交于A,B两点,且点P是线段AB的中点?如果能,求出直线l的方程;如果不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省大庆市铁人中学高二(上)期中数学试卷(解析版) 题型:解答题

已知双曲线,过点P(1,1)能否作一条直线l,与双曲线交于A,B两点,且点P是线段AB的中点?如果能,求出直线l的方程;如果不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省新乡一中高二(上)期末数学试卷(文科)(解析版) 题型:解答题

已知双曲线,过点P(1,1)能否作一条直线l,与双曲线交于A,B两点,且点P是线段AB的中点?如果能,求出直线l的方程;如果不能,请说明理由.

查看答案和解析>>

同步练习册答案