精英家教网 > 高中数学 > 题目详情

【题目】已知 分别为等差数列和等比数列, 的前项和为.函数的导函数是,有,且是函数的零点.

(1)求的值;

(2)若数列公差为,且点,当时所有点都在指数函数的图象上.

请你求出解析式,并证明: .

【答案】1,2见解析

【解析】试题分析:(1)求出,由,得,从而可得,求出函数的零点,进而可得的值;(2)根据(1),可求出等差数列列的通项公式,由点,当时所有点都在指数函数的图象上可得,即 取特殊值列方程组可求得,从而可得,利用等比数列的求和公式及放缩法可证明结论.

试题解析:1,又,所以

.

的零点为,而的零点,又是等比数列的首项,所以

.

(2)∵

的公比为,则.

都在指数函数的图象上,即,即时恒成立,

解得.所以.

因为,所以当时, 有最小值为,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题px[112]x2﹣a0.命题qx0R,使得x02+a﹣1x0+10.pq为真,pq为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知 分别是中点,弧的半径分别为,点平分弧,过点作弧的切线分别交于点.四边形为矩形,其中点在线段上,点在弧上,延长交于点.设,矩形的面积为.

(1)求的解析式并求其定义域;

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.
(1)求圆C1的圆心坐标;
(2)求线段AB 的中点M的轨迹C的方程;
(3)是否存在实数 k,使得直线L:y=k(x﹣4)与曲线 C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二(1)班学生为了筹措经费给班上购买课外读物,班委会成立了一个社会实践小组,决定利用暑假八月份(30天计算)轮流换班去销售一种时令水果.在这30天内每斤水果的收入(元)与时间(天)的部分数据如下表所示,已知日销售(斤)与时间(天)满足一次函数关系.

(1)根据提供的图象和表格,下厨每斤水果的收入(元)与时间(天)所满足的函数关系式及日销售量(斤)与时间(天)的一次函数关系;

(2)用(元)表示销售水果的日收入,写出的函数关系式,并求这30天中第几天日收入最大,最大值为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得
(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;
(Ⅱ)判断变量x与y之间是正相关还是负相关;
(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程y=bx+a中, ,其中 为样本平均值,线性回归方程也可写为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a是实数,f(x)=a﹣ (x∈R).
(1)证明不论a为何实数,f(x)均为增函数;
(2)若f(x)满足f(﹣x)+f(x)=0,解关于x的不等式f(x+1)+f(1﹣2x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角是(

A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司研发出一款产品,批量生产前先在某城市销售30天进行市场调查.调查结果发现:日销量与天数的对应关系服从图①所示的函数关系:每件产品的销售利润与天数的对应关系服从图②所示的函数关系.图①由抛物线的一部分(为抛物线顶点)和线段组成.

(Ⅰ)设该产品的日销售利润 ,分别求出 的解析式,

(Ⅱ)若在30天的销售中,日销售利润至少有一天超过8500元,则可以投入批量生产,该产品是否可以投入批量生产,请说明理由.

查看答案和解析>>

同步练习册答案