精英家教网 > 高中数学 > 题目详情
已知函数y=lg(ax2+2ax+1):
(1)若函数的定义域为R,求a的取值范围;
(2)若函数的值域为R,求a的取值范围.
分析:(1)由于函数的定义域为R,可得ax2+2ax+1>0恒成立.当a=0时,显然成立,当a≠0时,应有a>0且△=4a2-4a<0,由此求得a的取值范围.
(2)若函数的值域为R,则ax2+2ax+1能取遍所有的正整数,故有 a>0且△=4a2-4a≥0,由此求得a的取值范围.
解答:解:(1)∵函数的定义域为R,∴ax2+2ax+1>0恒成立.当a=0时,显然成立.
当a≠0时,应有a>0且△=4a2-4a<0,解得 a<1.
故a的取值范围为[0,1).
(2)若函数的值域为R,则ax2+2ax+1能取遍所有的正整数,∴a>0且△=4a2-4a≥0.
解得 a≥1,故a的取值范围为[1,+∞).
点评:本题主要考查对数函数的定义域和值域,二次函数的性质应用,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=lg(-x2+x+2)的定义域为A,指数函数y=ax(a>0且a≠1)(x∈A)的值域为B.
(1)若a=2,求A∪B;
(2)若A∩B=(
12
,2),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=lg(4-x)的定义域为A,集合B={x|x<a},若P:“x∈A”是Q:“x∈B””充分不必要条件,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=lg(ax2-4ax+3a+6)的定义域为R,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=lg(x+1)+3,(x>-1)则反函数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=lg(x-1)的定义域为集合A,函数y=x2+2x+m的值域为集合B.
(1)求集合A,B(用区间表示);
(2)设全集U=R,当 m=0时,求A∩B及?UA;
(3)当A⊆B时,求m的取值范围.

查看答案和解析>>

同步练习册答案