精英家教网 > 高中数学 > 题目详情
用数学归纳法证明不等式+…+>的过程中,由n=k推导n=k+1时,不等式的左边增加的式子是________.
不等式的左边增加的式子是,故填.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知xy均为正数,且xy,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若不等式+…+>对一切正整数n都成立,猜想正整数a的最大值,并证明结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k-1k,…,(-1),即当(k∈N*)时,an=(-1)k-1k,记Sn=a1+a2+…+an(n∈N*),用数学归纳法证明Si(2i+1)=-i(2i+1)(i∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a,b,c分别是三角形ABC的角A、B、C所对边,且a,b,c成等差数列,公差d≠0;
(1)求证:
1
a
1
b
1
c
不可能成等差数列.
(2)求证:0°<B<60°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列推理中属于归纳推理且结论正确的是(  )
A.设数列﹛an﹜的前n项和为sn,由an=2n﹣1,求出s1 =12 , s2=22,s3=32,…推断sn=n2
B.由cosx,满足x∈R都成立,推断为奇函数。
C.由圆的面积推断:椭圆(a>b>0)的面积s=πab
D.由(1+1)2>21,(2+1)2>22,(3+1)2 >23,…,推断对一切正整数n,(n+1)2>2n

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k到n=k+1,左边需增添的代数式是(  )
A.2k+2B.2k+3
C.2k+1D.(2k+2)+(2k+3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

由下列各个不等式:

你能得到一个怎样的一般不等式?并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明不等式,第二步由k到k+1时不等式左边需增加(      )
A.B.
C.D.

查看答案和解析>>

同步练习册答案