精英家教网 > 高中数学 > 题目详情
已知函数,x∈[0,1],
(1)求f(x)的单调区间和值域;
(2)设a≥1,函数g(x)=x3-3ax-2a,x∈[0,1],若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围。
解:(1)对函数f(x)求导,得
令f′(x)=0解得
当x变化时,f′(x),f(x)的变化情况如下表:

所以,当时,f(x)是减函数;当时,f(x)是增函数,
当x∈(0,1)时,f(x)的值域为[-4,-3]。
(2)对函数g(x)求导,得
∵a≥1,当x∈(0,1)时,
因此当x∈(0,1)时,g(x)为减函数,
从而当x∈[0,1]时有

即当x∈[0,1]时有
任给


又a≥1,所以a 的取值范围为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
0  x∈{x|x=2n+1,n∈Z}
1  x∈{x|x=2n,n∈Z}
,求f(f(-3))的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
0,x<0
π,x=0
x+1,x>0
,则f{f[f(-1)]}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
0(x≤0)
n[x-(n-1)]+f(n-1)(n-1<x≤n,n∈N*)
数列{an}满足an=f(n)(n∈N*
(1)求数列{an}的通项公式;
(2)设x轴、直线x=a与函数y=f(x)的图象所围成的封闭图形的面积为S(a)(a≥0),求S(n)-S(n-1)(n∈N*);
(3)在集合M={N|N=2k,k∈Z,且1000≤k<1500}中,是否存在正整数N,使得不等式an-1005>S(n)-S(n-1)对一切n>N恒成立?若存在,则这样的正整数N共有多少个?并求出满足条件的最小的正整数N;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
0(x>0)
-1 (x=0)
x2+1 (x<0)
则f{f[f(2)]}=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
0,x=0
|lg|x||,x≠0
,则方程f2(x)-f(x)=0的实根的个数是
7
7

查看答案和解析>>

同步练习册答案