精英家教网 > 高中数学 > 题目详情
17.已知数列{an}的前n和为Sn,a1=0,an+1=an+2$\sqrt{{a}_{n}+1}$+1,则a5+S4=(  )
A.39B.45C.50D.55

分析 推导出{$\sqrt{{a}_{n}+1}$}是首项为1,公差为1的等差数列,从而${a}_{n}={n}^{2}-1$,由此能求出a5+S4的值.

解答 解:∵数列{an}的前n和为Sn,a1=0,an+1=an+2$\sqrt{{a}_{n}+1}$+1,
∴$\sqrt{{a}_{n+1}+1}-\sqrt{{a}_{n}+1}$=1,$\sqrt{{a}_{1}+1}=0$,
∴{$\sqrt{{a}_{n}+1}$}是首项为1,公差为1的等差数列,
∴$\sqrt{{a}_{n}+1}$=1+(n-1)×1=n,
∴${a}_{n}={n}^{2}-1$,
∴${a}_{5}={5}^{2}-1$=24,
${S}_{4}={1}^{2}+{2}^{2}+{3}^{2}+{4}^{2}-4$=26.
∴a5+S4=24+26=50.
故选:C.

点评 本题考查数列的前5项和的求法,是基础题,解题时要认真审题,注意构造法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.某次运动会甲、乙两名射击运动员成绩如图所示,甲、乙的平均数分别为为 $\overline{{x}_{甲}}$、$\overline{{x}_{乙}}$,方差分别为s2,s2,则(  )
A.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s2>s2B.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s2<s2
C.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s2>s2D.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s2<s2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(α)=$\frac{cos(\frac{π}{2}-α)•cos(2π-α)}{sin(-π-α)}$.
(I)化简f(α);
(II)若角α为第三象限角,且f(α)=m,求tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C所对的边分为a,b,c,向量$\overrightarrow m$=(2b-c,a),$\overrightarrow n$=(cosC,cosA),且$\overrightarrow m∥\overrightarrow n$.
(1)求角A的大小;
(2)若$\overrightarrow{AB}•\overrightarrow{AC}$=4,求边a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一平面过半径为R的球O的半径OA的中点,且垂直于该半径OA,则该平面截球的截面面积为(  )
A.$\frac{1}{2}π{R^2}$B.$\frac{{\sqrt{3}}}{2}π{R^2}$C.πR2D.$\frac{3}{4}π{R^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若变量x,y满足约束条件$\left\{\begin{array}{l}x+2y-2≥0\\ 2x+y-4≤0\\ 4x-y+1≥0\end{array}\right.$,则目标函数z=y-2x的最大值是(  )
A.$\frac{3}{2}$B.2C.3D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等差数列{an}和{bn},其前n项和分别为Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+2}{n+3}$,则$\frac{{{a_{10}}}}{{{b_{10}}}}$等于(  )
A.$\frac{72}{13}$B.$\frac{135}{22}$C.$\frac{79}{14}$D.$\frac{142}{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设集合A={x|x>-1},B={x|-2<x<2},则集合A∩B等于{x|-1<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(t)=log2t,t∈[2,16],对于函数f(t)值域内的任意实数m,则使x2+mx+4>4m+4x恒成立的实数x的取值范围为(  )
A.(-∞,-2$\sqrt{3}$]B.[2,+∞)C.(-∞,-2$\sqrt{3}$]∪[2$\sqrt{3}$,+∞)D.(-∞,-2$\sqrt{3}$)∪(2$\sqrt{3}$,+∞)

查看答案和解析>>

同步练习册答案