精英家教网 > 高中数学 > 题目详情

如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.

(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求的取值范围.

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)根据题中的已知条件列有关的方程,求出,然后根据离心率求出,最后再根据三者之间的关系求出的值,从而确定椭圆的方程;(Ⅱ)先设点的坐标,然后根据已知条件将直线的方程用进行表示,再联立直线与椭圆的方程,结合韦达定理将表示为含为代数式,然后再利用不等式的性质求出的取值范围.
试题解析:(Ⅰ)设F2(c,0),则,所以c=1.
因为离心率e=,所以a=
所以椭圆C的方程为
(Ⅱ) 当直线AB垂直于x轴时,直线AB方程为x=-,此时P(,0)、Q(,0),
当直线AB不垂直于x轴时,设直线AB的斜率为k,M(-,m) (m≠0),A(x1,y1),B(x2,y2).
 得(x1+x2)+2(y1+y2)=0,
则-1+4mk=0,故k=
此时,直线PQ斜率为,PQ的直线方程为.即
联立 消去y,整理得
所以
于是(x1-1)(x2-1)+y1y2




令t=1+32m2,1<t<29,则
又1<t<29,所以
综上,的取值范围为
考点:椭圆的方程、平面向量的数量积、韦达定理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知△ABC的两个顶点A,B的坐标分别是(-5,0),(5,0),且AC,BC所在直
线的斜率之积等于m(m≠0),求顶点C的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是抛物线上相异两点,到y轴的距离的积为

(1)求该抛物线的标准方程.
(2)过Q的直线与抛物线的另一交点为R,与轴交点为T,且Q为线段RT的中点,试求弦PR长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知定点A(-2,0)、B(2,0),异于A、B两点的动点P满足,其中k1、k2分别表示直线AP、BP的斜率.

(Ⅰ)求动点P的轨迹E的方程;
(Ⅱ)若N是直线x=2上异于点B的任意一点,直线AN与(I)中轨迹E交予点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),点C(1,0),求证:|CM|·|CN| 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右焦点分别为,P为椭圆 上任意一点,且的最小值为.
(1)求椭圆的方程;
(2)动圆与椭圆相交于A、B、C、D四点,当为何值时,矩形ABCD的面积取得最大值?并求出其最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的左、右焦点分别为,且椭圆过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点,试判断的大小是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一条曲线轴右边,上每一点到点的距离减去它到轴距离的差都等于1.
(1)求曲线C的方程;
(2)若过点M的直线与曲线C有两个交点,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,曲线与曲线相交于四个点.
⑴ 求的取值范围;
⑵ 求四边形的面积的最大值及此时对角线的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,A,B是椭圆的两个顶点, ,直线AB的斜率为.求椭圆的方程;(2)设直线平行于AB,与x,y轴分别交于点M、N,与椭圆相交于C、D,
证明:的面积等于的面积.

查看答案和解析>>

同步练习册答案