精英家教网 > 高中数学 > 题目详情

【题目】某港口的水深(米)是时间,单位:小时)的函数,下面是每天时间与水深的关系表:

经过长期观测,可近似的看成是函数

1)根据以上数据,求出的解析式;

2)若船舶航行时,水深至少要米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?

【答案】12

【解析】

1)由表中数据可以看到:水深最大值为13,最小值为7,求出;再借助于相隔12小时达到一次最大值说明周期为12求出即可求出的解析式;

2)把船舶安全转化为深度,即;再解关于的三角不等式即可求出船舶在一天中的哪几段时间可以安全的进出该港.

解:(1)由表中数据可以看到:水深最大值为,最小值为

且相隔小时达到一次最大值说明周期为

因此

2)要想船舶安全,必须深度,即

解得:

时,

时,

故船舶安全进港的时间段为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数的图象经过点,且相邻的两条对称轴之间的距离为.

1)求函数的解析式;

2)若将函数的图象向右平移个单位后得到函数的图象,当时,的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的最大值和最小值;

2)求实数的取值范围,使在区间上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)求函数的单调减区间;

2)若函数在区间上的极大值为8,求在区间上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点,点是单位圆与轴的正半轴的交点.

1)若,求.

2)已知,若是等边三角形,求的面积.

3)设点为单位圆上的动点,点满足,求的取值范围.时,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.

方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.

方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.

(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;

(2)若某顾客获得抽奖机会.

①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;

②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:

1)根据频数分布表计算苹果的重量在的频率;

2)用分层抽样的方法从重量在的苹果中共抽取4个,其中重量在的有几个?

3)在(2)中抽出的4个苹果中,任取2个,写出所有可能的结果,并求重量在中各有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数数列满足.

1)求数列的通项公式;

2)若等比数列满足,求的值用含n的式子表示

3)若,求证:数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则(  )

A平面α与平面β垂直

B平面α与平面β所成的(锐)二面角为45°

C平面α与平面β平行

D平面α与平面β所成的(锐)二面角为60°

查看答案和解析>>

同步练习册答案