精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A、B、C的对边分别为a、b、c,且 ,B=C. (Ⅰ)求cosB的值;
(Ⅱ)设函数f(x)=sin(2x+B),求 的值.

【答案】解:(Ⅰ)∵B=C,∴c=b, 又∵a= b,
∴cosB= = =
(Ⅱ)由(Ⅰ)得sinB= =
∴f( )=sin( +B)=sin cosB+cos sinB= × + × =
【解析】(Ⅰ)由等角对等边得到c=b,再由a= b,利用余弦定理即可求出cosB的值;(Ⅱ)由cosB的值,求出sinB的值,将x= 代入f(x)计算即可求出f( )的值.
【考点精析】关于本题考查的余弦定理的定义,需要了解余弦定理:;;才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在公差大于0的等差数列{an}中,2a7﹣a13=1,且a1 , a3﹣1,a6+5成等比数列,则数列{(﹣1)n﹣1an}的前21项和为(
A.21
B.﹣21
C.441
D.﹣441

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公比为正数的等比数列{an}(n∈N*),首项a1=3,前n项和为Sn , 且S3+a3、S5+a5、S4+a4成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知cosα= ,cos(αβ)= ,且0<β<α<
(1)求tan2α的值;
(2)求β.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C: =1(a>b>0)的离心率为 ,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求 的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR||OS|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,A,B的坐标分别为(-1,2),(4,3),AC的中点M在y轴上,BC的中点N在x轴上.
(1)求点C的坐标;
(2)求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论:
①方程k 与方程y-2=k(x+1)可表示同一直线;
②直线l过点P(x1y1),倾斜角为 ,则其方程为xx1
③直线l过点P(x1y1),斜率为0,则其方程为yy1
④所有直线都有点斜式和斜截式方程.
其中正确的个数为( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点M(2,2),N(5,-2),点P在x轴上,分别求满足下列条件的点P的坐标.
(1)∠MOP=∠OPN(O是坐标原点).
(2)∠MPN是直角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )
A.
B.8
C.
D.10

查看答案和解析>>

同步练习册答案