精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的两个焦点坐标分别是,并且经过点.

1)求椭圆的标准方程;

2)若斜率为的直线经过点,且与椭圆交于不同的两点,面积的最大值.

【答案】(12

【解析】试题分析:(1)由椭圆的两个焦点坐标分别是,即椭圆的焦半径,并且经过点,所以根据椭圆的定义求得椭圆的长半轴,再根据即可求出椭圆的短半轴的值.从而得到椭圆的标准方程.

2)假设过点的直线,联立方程,韦达定理以及弦长公式表示出弦长.再用点到直线的距离,即可得到高.再通过换元求得最值.

试题解析:(1)设椭圆的标准方程为,有椭圆的定义可得

故椭圆的标准方程为4.

2)设直线的方程为

,依题意

6

7

8

由点到直线的距离公式得9

10

当且仅当时,上式取等号,

所以, 面积的最大值为12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求的极值;

(2)令,求函数的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 分别是其左、右焦点,以线段为直径的圆与椭圆有且仅有两个交点.

(1)求椭圆的方程;

(2)设过点且不与坐标轴垂直的直线交椭圆于两点,线段的垂直平分线与轴交于点,点横坐标的取值范围是,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克),如图是测量数据的茎叶图:

规定:当产品中的此种元素含量不小于16毫克时,该产品为优等品.

(1)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望

(2)从甲厂的10件样品中有放回地逐个随机抽取3件,也从乙厂的10件样品中有放回地逐个随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点的椭圆的两焦点分别为双曲线的顶点,直线与椭圆交于两点,且,点是椭圆上异于的任意一点,直线外的点满足 . 

(1)求点的轨迹方程;

(2)试确定点的坐标,使得的面积最大,并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线的方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为).

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)曲线上有3个点到曲线的距离等于1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】423日是世界读书日,惠州市某中学在此期间开展了一系列的读书教育活动。为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查。下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,且将日均课外阅读时间不低于60分钟的学生称为读书迷,低于60分钟的学生称为非读书迷

)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为读书迷与性别有关?

)将频率视为概率,现在从该校大量学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中读书迷的人数为,若每次抽取的结果是相互独立的,求的分布列、数学期望和方差

附:


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“累积净化量”是空气净化器质量的一个重要衡量指标,它是指空气净化从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示,根据《空气净化器》国家标准,对空气净化器的累计净化量有如下等级划分:

累积净化量(克)

12以上

等级

为了了解一批空气净化器(共5000台)的质量,随机抽取台机器作为样本进行估计,已知这台机器的累积净化量都分布在区间中,按照均匀分组,其中累积净化量在的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了频率分布直方图,如图所示:

(1)求的值及频率分布直方图中的值;

(2)以样本估计总体,试估计这批空气净化器(共5000台)中等级为的空气净化器有多少台?

(3)从累积净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据已往经验,潜水员下潜的平均速度为(米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为(升),记该潜水员在此次考察活动中的总用氧量为(升).

(1)求关于的函数关系式;

(2)若,求当下潜速度取什么值时,总用氧量最少.

查看答案和解析>>

同步练习册答案