精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角ABC的对边分别为abc.已知

(Ⅰ)求的值;

(Ⅱ)若,△ABC的周长为7,求b

【答案】(Ⅰ)3(Ⅱ)b3

【解析】

)由正弦定理转化得到sinBcosA+sinAcosB3sinCcosB+sinBcosC),化简得到sinC3sinA,即得解;

由余弦定理得到:b3a,结合周长,可求解b.

bcosA3bcosC3ccosBacosB

由正弦定理可得sinBcosA+sinAcosB3sinCcosB+sinBcosC),

可得sinA+B)=3sinB+C),即sinC3sinA

3

3,可得c3a

由余弦定理可得b2a2+c22accosBa2+c2aca2+9a2a29a2

可得b3a

∵△ABC的周长为7,即a+b+ca+3a+3a7

解得a1b3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为实数.

1)当时,判断函数在其定义域上的单调性;

2)是否存在实数,使得对任意的恒成立?若不存在,请说明理由;若存在,求出的值并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A4纸是生活中最常用的纸规格.A系列的纸张规格特色在于:①A0A1A2A5,所有尺寸的纸张长宽比都相同.②在A系列纸中,前一个序号的纸张以两条长边中点连线为折线对折裁剪分开后,可以得到两张后面序号大小的纸,比如1A0纸对裁后可以得到2A1纸,1A1纸对裁可以得到2A2纸,依此类推.这是因为A系列纸张的长宽比为1这一特殊比例,所以具备这种特性.已知A0纸规格为84.1厘米×118.9厘米.118.9÷84.1≈1.41≈,那么A4纸的长度为(  )

A.厘米B.厘米C.厘米D.厘米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=(m+2)是幂函数,设a=log54,b=c=0.5–0.2,则fa),fb),fc)的大小关系是

A.fa)<fb)<fcB.fb)<fc)<fa

C.fc)<fb)<faD.fc)<fa)<fb

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解学生的体育锻炼时间,采用简单随机抽样方法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下:

分组

男生人数

2

16

19

18

5

3

女生人数

3

20

10

2

1

1

若将平均每日参加体育锻炼的时间不低于120分钟的学生称为锻炼达人

1)将频率视为概率,估计该校4000名学生中锻炼达人有多少?

2)从这100名学生的锻炼达人中按性别分层抽取5人参加某项体育活动.

①求男生和女生各抽取了多少人?

②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男女各1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的极小值;

2)证明:当时,不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》的学生有70位,只阅读过《红楼梦》的学生有20位,则既没阅读过《西游记》也没阅读过《红楼梦》的学生人数与该校学生总数比值的估计值为(

A.0.1B.0.2C.0.3D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别是是其左右顶点,点是椭圆上任一点,且的周长为6,若面积的最大值为.

(1)求椭圆的方程;

(2)若过点且斜率不为0的直线交椭圆两个不同点,证明:直线的交点在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为的等边三角形中,点分别是边上的点,满足,将沿直线折到的位置. 在翻折过程中,下列结论成立的是(

A.在边上存在点,使得在翻折过程中,满足平面

B.存在,使得在翻折过程中的某个位置,满足平面平面

C.,当二面角为直二面角时,

D.在翻折过程中,四棱锥体积的最大值记为的最大值为

查看答案和解析>>

同步练习册答案